Algebraic Topology
Subject MAST90023 (2016)
Note: This is an archived Handbook entry from 2016.
Credit Points: | 12.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2016: Semester 1, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 36 hours comprising three 1-hour lectures per week Total Time Commitment: 170 hours | ||||||||||||
Prerequisites: | Both of the following, or equivalent: Subject Study Period Commencement: Credit Points: | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: |
For the purposes of considering requests for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements for this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/ |
Subject Overview: |
This subject studies topological spaces and continuous maps between them. It demonstrates the power of topological methods in dealing with problems involving shape and position of objects and continuous mappings, and shows how topology can be applied to many areas, including geometry, analysis, group theory and physics. The aim is to reduce questions in topology to problems in algebra by introducing algebraic invariants associated to spaces and continuous maps. Important classes of spaces studied are manifolds (locally Euclidean spaces) and CW complexes (built by gluing together cells of various dimensions). Topics include: homotopy of maps and homotopy equivalence of spaces, homotopy groups of spaces, the fundamental group, covering spaces; homology theory, including singular homology theory, the axiomatic approach of Eilenberg and Steenrod, and cellular homology. |
---|---|
Learning Outcomes: |
After completing this subject, students should gain:
|
Assessment: |
Up to 60 pages of assignments (60%: three assignments worth 20% each, due early, mid and late in semester), a 2-hour written examination (40%, in the examination period). |
Prescribed Texts: | None |
Recommended Texts: |
A. Hatcher. Algebraic Topology, Cambridge University Press (2002), available online at http://www.math.cornell.edu/~hatcher/AT/ATpage.html. |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include:
|
Related Course(s): |
Doctor of Philosophy - Engineering Master of Philosophy - Engineering Master of Science (Mathematics and Statistics) |
Related Majors/Minors/Specialisations: |
Mathematics and Statistics |
Download PDF version.