Algebra
Subject MAST30005 (2016)
Note: This is an archived Handbook entry from 2016.
Credit Points: | 12.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 3 (Undergraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2016: Semester 1, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 3 x one hour lectures per week, 1 x one hour practice class per week Total Time Commitment: Estimated total time commitment of 170 hours | ||||||||||||
Prerequisites: | Subject Study Period Commencement: Credit Points: | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry. It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability |
Subject Overview: |
Algebra has a long history of important applications throughout mathematics, science and engineering, and is also studied for its intrinsic beauty. In this subject we study the algebraic laws satisfied by familiar objects such as integers, polynomials and matrices. This abstraction simplifies and unifies our understanding of these structures and enables us to apply our results to interesting new cases. Students will gain further experience with abstract algebraic concepts and methods. General structural results are proved and algorithms developed to determine the invariants they describe. |
---|---|
Learning Outcomes: |
On completion of this subject, students should Have an understanding of:
Be able to:
|
Assessment: |
Two or three written assignments due at regular intervals during semester amounting to a total of up to 50 pages (20%), and a 3-hour written examination in the examination period (80%). |
Prescribed Texts: | None |
Recommended Texts: | Michael Artin, Algebra, 2nd Edition, Pearson, 2010. |
Breadth Options: | This subject potentially can be taken as a breadth subject component for the following courses: You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include:
|
Notes: |
This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course. |
Related Majors/Minors/Specialisations: |
Pure Mathematics Pure Mathematics Pure Mathematics Pure Mathematics Pure Mathematics (specialisation of Mathematics and Statistics major) Science-credited subjects - new generation B-SCI and B-ENG. Selective subjects for B-BMED |
Download PDF version.