RF Electronics and Design

Subject ELEN90049 (2012)

Note: This is an archived Handbook entry from 2012.

Credit Points: 12.50
Level: 9 (Graduate/Postgraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2012:

Semester 2, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable

Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 1 two hour lecture per week
Total Time Commitment: 120 hours
Prerequisites: Prerequisites for this subject are
Study Period Commencement:
Credit Points:
Semester 1
Corequisites: Corequisite for this subject is
Study Period Commencement:
Credit Points:
Recommended Background Knowledge: None
Non Allowed Subjects: None
Core Participation Requirements: For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/


Prof Stan Skafidas


Prof Stan Skafidas
Email: sskaf@unimelb.edu.au
Subject Overview: This subject will introduce students to high frequency design of low noise amplifiers, mixers, voltage controlled oscillators, power amplifiers, power combining techniques, Doherty power amplifiers, stacked transistor designs, dividers and phase locked loops. After completing this subject students will be able to design, simulate (schematic and post layout simulation), extract and fabricate components operating in the 50+GHz frequency range.
Objectives: Upon successful completion of this subject students should be able to:
  • Design, simulate and analyse the performance of RF low noise amplifiers, on chip power amplifiers, up and down conversion mixers, Voltage Controlled Oscillators and Phase Locked Loops.
  • One, written examination (not exceeding three hours) at the end of semester, worth 70%;
  • Continuous assessment of submitted project work (not exceeding 30 pages in total over the semester), worth 30%.

Prescribed Texts: None
Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:
  • Ability to apply knowledge of science and engineering fundamentals
  • Ability to undertake problem identification, formulation, and solution
  • Ability to utilise a systems approach to complex problems and to design andoperationalperformance
  • Ability to build and test real world systems that meet industry specialisation and manufacturing standards
  • Capacity for lifelong learning and professional development
Related Course(s): Master of Nanoelectronic Engineering

Download PDF version.