Mathematical Statistics
Subject MAST90082 (2016)
Note: This is an archived Handbook entry from 2016.
Credit Points: | 12.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2016: Semester 1, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: Contact Hours: 36 hours comprising 2 one-hour lectures per week and 1 one-hour practice class per week. Total Time Commitment: Estimated Total Time Commitment -170 hours | ||||||||||||
Prerequisites: | Subject Study Period Commencement: Credit Points: And any third-year subject in statistics or stochastic processes. These can include the following subjects: Subject Study Period Commencement: Credit Points: | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry. It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability |
Subject Overview: |
The theory of statistical inference is important for applied statistics and as a discipline in its own right. After reviewing random samples and related probability techniques including inequalities and convergence concepts the theory of statistical inference is developed. The principles of data reduction are discussed and related to model development. Methods of finding estimators are given, with an emphasis on multi-parameter models, along with the theory of hypothesis testing and interval estimation. Both finite and large sample properties of estimators are considered. Applications may include robust and distribution free methods, quasi-likelihood and generalized estimating equations. It is expected that students completing this course will have the tools to be able to develop inference procedures in novel settings. |
---|---|
Learning Outcomes: |
After completing this subject students should gain:
|
Assessment: |
|
Prescribed Texts: | None |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include:
|
Related Course(s): |
Doctor of Philosophy - Engineering Master of Commerce (Actuarial Science) Master of Philosophy - Engineering Master of Science (Mathematics and Statistics) |
Related Majors/Minors/Specialisations: |
Mathematics and Statistics |
Download PDF version.