Web Search and Text Analysis
Subject COMP90042 (2016)
Note: This is an archived Handbook entry from 2016.
Credit Points: | 12.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2016: Semester 1, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 36 hours, comprising of one 2-hour lecture and one 1-hour workshop per week Total Time Commitment: 200 hours | ||||||||||||
Prerequisites: | One of the following: Subject Study Period Commencement: Credit Points: | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: |
433-460 Human Language Technology | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry. It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability |
Subject Overview: |
AIMS The aims for this subject is for students to develop an understanding of the main algorithms used in natural language processing and text retrieval, for use in a diverse range of applications including search engines, cross-language information retrieval, machine translation, text mining, question answering, summarisation, and grammar correction. Topics to be covered include text normalisation, sentence boundary detection, part-of-speech tagging, n-gram language modelling, and text classification. The programming language used is Python.
INDICATIVE CONTENT Topics covered will include:
|
---|---|
Learning Outcomes: |
NTENDED LEARNING OUTCOMES (ILO) On completion of this subject the student is expected to:
|
Assessment: |
Hurdle requirement: To pass the subject, students must obtain at least:
Intended Learning Outcomes (ILOs) 1 and 2 are addressed in the lectures, workshops, and exam; ILOs 3 and 4 are addressed in the project work and oral presentation.
|
Prescribed Texts: | None |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
On completing this subject, students should have the following skills:
|
Notes: |
LEARNING AND TEACHING METHODS The subject comprises a weekly 2 hour lecture followed by a 1 hour laboratory exercise. Weekly readings are assigned from the research literature, and weekly laboratory exercises are assigned. Additionally, a significant amount of project work is assigned.
INDICATIVE KEY LEARNING RESOURCES At the beginning of the semester, the coordinator will post a list of readings from the research literature and research monographs which will form the basis of the intellectual content of the subject. An indicative monograph is Statistical Machine Translation, by Philipp Koehn (2010).
CAREERS / INDUSTRY LINKS A growing sector of the IT industry is concerned with leveraging the information that is locked up in semi-structured text data on the web. Large scale analysis and exploitation of this information depends on graduates with a solid grounding in natural language processing and text retrieval algorithms, and experience with implementing systems that are informed by the research literature.
|
Related Course(s): |
Doctor of Philosophy - Engineering Master of Information Technology Master of Philosophy - Engineering Master of Science (Computer Science) |
Related Majors/Minors/Specialisations: |
B-ENG Software Engineering stream Computer Science Computer Science MIT Computing Specialisation MIT Distributed Computing Specialisation Master of Engineering (Software) |
Download PDF version.