Computational Physics

Subject PHYC30012 (2015)

Note: This is an archived Handbook entry from 2015.

Credit Points: 12.5
Level: 3 (Undergraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2015:

Semester 2, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period 27-Jul-2015 to 25-Oct-2015
Assessment Period End 20-Nov-2015
Last date to Self-Enrol 07-Aug-2015
Census Date 31-Aug-2015
Last date to Withdraw without fail 25-Sep-2015


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 12 lectures, 12 tutorials, 24 hours of practical classes (two hours per week) and 72 hours of project work.
Total Time Commitment:

170 hours

Prerequisites:

Physics

Subject
Study Period Commencement:
Credit Points:
Semester 1
12.50

And Mathematics

Subject
Study Period Commencement:
Credit Points:
Semester 1, Semester 2
12.50

And at least one of

Subject
Study Period Commencement:
Credit Points:
Semester 1, Semester 2
12.50
Corequisites: None
Recommended Background Knowledge:

Prior computing experience is recommended but not essential.

Non Allowed Subjects: None
Core Participation Requirements:

For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry.

It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability

Coordinator

Prof Elisabetta Barberio

Contact

Email: PHYC30012@physics.unimelb.edu.au

Subject Overview:

This subject will introduce students to the use of computational techniques in the investigation of a wide class of problems in physics. Using professional computing tools, students will develop their programming skills and learn a range of numerical methods commonly used in physics research, and apply these techniques to the investigation of physical systems through the completion of projects.

The five projects will be based on model problems in physics, and may include molecular vibrations, stellar structure, quantum spin systems, large-scale magnetic systems and gravitational lensing by point masses.

Learning Outcomes:

Students completing this subject shouldbe able to:

  • explain the application of a variety of computational techniques including differencing, root finding, quadrature, ordinary and partial differential equations, matrix eigenvalue problems, Monte Carlo methods and fast Fourier transforms to physical problems; and

  • apply these methods to a range of physical situations.

Assessment:

Five computer-based projects due during the semester, each equivalent to 1500 words, contributing 20% each.

Prescribed Texts:

None

Recommended Texts:

S Koonin, Computational Physics (FORTRAN edition) Addison-Wesley

Breadth Options:

This subject potentially can be taken as a breadth subject component for the following courses:

You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:

Students should enhance their ability to:

  • participate effectively as part of a group; and

  • plan effective work schedules and manage their time to meet the deadlines for submission of assessable work.

Notes:

This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course.

Related Majors/Minors/Specialisations: Physics
Physics
Physics
Physics
Physics (specialisation of Physics major)
Science-credited subjects - new generation B-SCI and B-ENG.

Download PDF version.