Thermofluids 2

Subject MCEN30004 (2010)

Note: This is an archived Handbook entry from 2010.

Credit Points: 12.50
Level: 3 (Undergraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2010:

Semester 1, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable

On campus only

Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 36 hours of lectures, 12 hours of tutorials and 3 hours of laboratory work.
Total Time Commitment: 120 hours


Corequisites: N/A
Recommended Background Knowledge: N/A
Non Allowed Subjects: N/A
Core Participation Requirements: For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry.

The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website:


Dr Nicholas Hutchins


Melbourne School of Engineering Office
Building 173, Grattan Street
The University of Melbourne
VIC 3010 Australia
General telephone enquiries
+ 61 3 8344 6703
+ 61 3 8344 6507
+ 61 3 9349 2182
+ 61 3 8344 7707
Subject Overview:

Unit 1, Fluid Dynamics: On completion of this unit students should be able to analyse inviscid flow of an incompressible fluid for simple boundary conditions and know where the concepts are applicable in practice; appreciate the application of Laplace's equation to a number of phenomena including fluid flow; be able to use complex velocity potential analysis to solve a variety of inviscid flow problems including incompressible flow past airfoils; and know the basic characteristics of pumps and fans and their classification and how to match these with operating systems.

Topics covered include basic introduction to inviscid flow with and without vorticity; concepts and analysis using stream function and velocity potential; incompressible viscous flow past bodies with vortex shedding; and basic equations of pumps and fans and their classification and characteristics.

Unit 2, Thermodynamics: On completion of this unit students should have an understanding of the fundamentals of heat transfer under steady and unsteady conditions; appreciate the application of Laplace's equation to heat conduction; understand the principles of thermodynamic plant design including heat and mass transfer; and have a working knowledge of heat exchangers and regenerators.

Topics covered include thermal conduction in steady and unsteady conditions; convection, Reynolds analogy and dimensional analysis; free and forced convection; radiation heat transfer; heat and mass transfer, boiling and condensation; and heat exchangers and regenerators, heat exchanger ­applications.

Objectives: At the conclusion of this subject students should be able to:

• Analyse incompressible and inviscid fluid flows using potential flow theory

• Apply the first and second laws of thermodynamics to several engineering devices.

• Analyse devices in which heat transfer by conduction, convection and radiation occurs.

One 3-hour end-of-semester examination. Tutorial tests and assignments to be submitted throughout the semester. Unit 1 Fluid Mechanics: Examination 35%; laboratory 5% and assignments not exceeding 30 pages or equivalent 10%. Unit 2 Heat Transfer: Examination 35%, laboratory and assignment reports not exceeding 30 pages or equivalent 15%.

Prescribed Texts: TBA
Recommended Texts:

Information Not Available

Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills: On completion of the subject students should have the following skills:
  • ability to apply knowledge of basic science and engineering fundamentals

  • ability to communicate effectively, not only with engineers but also with the community at large

  • in-depth technical competence in at least one engineering discipline

  • ability to undertake problem identification, formulation and solution

  • ability to utilise a systems approach to design and operational performance

  • ability to function effectively as an individual and in multi-disciplinary and multi-cultural teams, with the capacity to be a leader or manager as well as an effective team member

  • understanding of the principles of sustainable design and development

  • expectation of the need to undertake lifelong learning, capacity to do so

  • capacity for independent critical thought, rational inquiry and self-directed learning

  • intellectual curiosity and creativity, including understanding of the philosophical and methodological bases of research activity

  • openness to new ideas and unconventional critiques of received wisdom

  • profound respect for truth and intellectual integrity, and for the ethics of scholarship

Related Course(s): Bachelor of Engineering (Biomedical) Biomechanics
Bachelor of Engineering (EngineeringManagement)Mechanical&Manufacturing
Bachelor of Engineering (Mechanical &Manufacturing) and Bachelor of Arts
Bachelor of Engineering (Mechanical &Manufacturing)& Bachelor of Science
Bachelor of Engineering (Mechanical &Manufacturing)/Bachelor of Commerce
Bachelor of Engineering (Mechanical and Manufacturing Engineering)
Bachelor of Engineering (Mechatronics) and Bachelor of Computer Science
Bachelor of Engineering(Mechanical & Manufacturing) and Bachelor of Laws

Download PDF version.