Statistical Physics
Subject PHYC30017 (2010)
Note: This is an archived Handbook entry from 2010.
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 3 (Undergraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2010: Semester 2, Parkville - Taught on campus.
Lectures Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 2 to 4 hours per week, 36 in total, lectures and problem-solving classes Total Time Commitment: 120 hours total time commitment. | ||||||||||||
Prerequisites: |
Physics Either both of Or one of
And Mathematics Either both of Or
For students who commenced second year level mathematics prior to 2009: One of
And one of
| ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: |
Students may only gain credit for one of
| ||||||||||||
Core Participation Requirements: | It is University policy to take all reasonable steps to minimise the impact of disability upon academic study and reasonable steps will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact upon their active and safe participation in a subject are encouraged to discuss this with the relevant subject coordinator and the Disability Liaison Unit. |
Subject Overview: |
Statistical mechanics, the microscopic basis of classical thermodynamics, is developed in this subject. It is one of the core areas of physics, finding wide application in solid state physics, astrophysics, plasma physics and cosmology. Using fundamental ideas from quantum physics, a systematic treatment of statistical mechanics is developed for systems in equilibrium. The content of this subject includes ensembles and the basic postulate; the statistical basis of the second and third laws of thermodynamics; canonical, micro-canonical and grand-canonical ensembles and associated statistical and thermodynamic functions; ideal quantum gases; black body radiation; the classical limit and an introduction to real gases; applications to solid state physics; and the Boltzmann equation and an introduction to kinetic theory. |
---|---|
Objectives: |
Students completing this subject should be able to:
|
Assessment: |
Two assignments each equivalent to 1500 words during the semester (10% each) and a 3-hour written examination in the examination period (80%). |
Prescribed Texts: | D J Amit and Y Verbin, Statistical Physics: An Introductory Course, World Scientific |
Recommended Texts: | K Huang, Introduction to Statistical Physics, Taylor and Francis |
Breadth Options: | This subject potentially can be taken as a breadth subject component for the following courses: You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
A student who completes this subject should be able to:
|
Notes: | This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course. |
Related Course(s): |
Bachelor of Science |
Related Majors/Minors/Specialisations: |
Chemical Physics Mathematical Physics Mathematics and Statistics (Mathematical Physics specialisation) Physics Physics |
Download PDF version.