Numerical and Symbolic Mathematics
Subject MAST30028 (2010)
Note: This is an archived Handbook entry from 2010.
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 3 (Undergraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2010: Semester 1, Parkville - Taught on campus.
Lectures and computer laboratory classes. Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 2 x one hour lectures and 1 x two hour computer laboratory class per week for the first 6 weeks of semester. 1 x one hour lecture, 1 x two hour computer laboratory class and 1 x one hour computer laboratory class per week for the last 6 weeks of semester. Total Time Commitment: Estimated total time commitment of 120 hours | ||||||||||||
Prerequisites: |
One of And any other second year level subject from the Department of Mathematics and Statistics. | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: |
Students may only gain credit for one of
| ||||||||||||
Core Participation Requirements: | It is University policy to take all reasonable steps to minimise the impact of disability upon academic study and reasonable steps will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact upon their active and safe participation in a subject are encouraged to discuss this with the relevant subject coordinator and the Disability Liaison Unit. |
Coordinator
Assoc Prof Jan De Gier, Dr Steven CarnieContact
Third Year Coordinator
Email: tycoord@ms.unimelb.edu.au
Subject Overview: |
Computer packages, such as Matlab, Maple and Mathematica, are indispensable tools for many scientists and engineers in simulating complex systems or studying analytically intractable or computationally intensive problems. This subject introduces such numerical and symbolic techniques with an emphasis on the development and implementation of mathematical algorithms including aspects of their efficiency, accuracy and stability. The different strategies and style of programming methodologies required when tackling problems either numerically or symbolically are highlighted. Examples used to illustrate numerical mathematics include the direct solution of linear systems and time-stepping methods for initial value problems. Symbolic methods will be demonstrated with a wide range of examples. |
---|---|
Objectives: |
On completion of this subject, students should:
|
Assessment: |
Three computational assignments due at regular intervals during semester (60%), and a 3-hour computer laboratory examination in the examination period (40%). |
Prescribed Texts: | None |
Recommended Texts: | C. Moler, Numerical Computing with Matlab, SIAM, 2004. |
Breadth Options: | This subject potentially can be taken as a breadth subject component for the following courses: You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include:
|
Notes: | This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course. |
Related Course(s): |
Bachelor of Science |
Related Majors/Minors/Specialisations: |
Applied Mathematics Mathematical Physics Mathematics and Statistics (Applied Mathematics specialisation) Mathematics and Statistics (Discrete Mathematics specialisation) Mathematics and Statistics (Financial Mathematics specialisation) |
Download PDF version.