Transport Processes
Subject CHEN20009 (2010)
Note: This is an archived Handbook entry from 2010.
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 2 (Undergraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2010: Semester 2, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 36 hours of lectures, 12 hours of tutorials and 4 hours of laboratory work Total Time Commitment: Estimated 120 hours | ||||||||||||
Prerequisites: |
| ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: | For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability |
Coordinator
Dr Dalton HarvieContact
Melbourne School of Engineering OfficeBuilding 173, Grattan Street
The University of Melbourne
VIC 3010 Australia
General telephone enquiries:
+ 61 3 8344 6703
+ 61 3 8344 6507
Facsimiles:
+ 61 3 9349 2182
+ 61 3 8344 7707
Email: eng-info@unimelb.edu.au
Subject Overview: |
This subject covers fundamental concepts of diffusion and conservation within momentum, heat and mass transport. Within momentum transport specific topics include Newton’s law of viscosity, viscosity of gases and liquids, conservation of momentum, velocity distributions in simple laminar flows, boundary layer concepts and turbulence and the Reynolds number. Within heat transport specific topics include Fourier’s law of conduction, thermal conductivities of gases, liquids and solids, conservation of thermal energy, steady-state temperature distributions in simple geometries, heat transfer resistance, thermal boundary layer concepts, the Nusselt and Prandtl numbers and definition and use of heat transfer coefficients. Within mass transport specific topics include Fick’s first law of diffusion, diffusivities of gases, liquids and solids, binary mixture diffusion and conservation of mass, concentration distributions in simple binary systems including identifying appropriate boundary conditions, concentration boundary layer concepts, Schmidt and Sherwood numbers, definition and use of mass transfer coefficients
|
---|---|
Objectives: |
On completion of this subject students should be able to
|
Assessment: |
|
Prescribed Texts: | None |
Recommended Texts: |
Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, second edition, Wiley, 2002 and onwards Coulson, J.M., and Richardson, J.F., Chemical Engineering,Volume 1, sixth edition, Butterworth-Heinemann, 1999
|
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: | None |
Notes: | This subject is available for science credit to students enrolled in the BSc (new degree only). |
Related Course(s): |
Bachelor of Engineering Bachelor of Science |
Related Majors/Minors/Specialisations: |
Master of Engineering (Biomolecular) Master of Engineering (Chemical) |
Download PDF version.