Reactivity and Mechanism
Subject CHEM30016 (2010)
Note: This is an archived Handbook entry from 2010.
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 3 (Undergraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2010: Semester 1, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 3 x one hour lectures per week; 1 x one hour tutorial per week; 3 x one hour seminars during the semester. Total 51 hours. Total Time Commitment: Estimated total time commitment of 120 hours | ||||||||||||
Prerequisites: | One of Subject Study Period Commencement: Credit Points: Subject Study Period Commencement: Credit Points: Or One of
Plus one of
Plus one of
| ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | Students who have completed any one of the following cannot enrol in this subject for credit Subject | ||||||||||||
Core Participation Requirements: |
It is University policy to take all reasonable steps to minimise the impact of disability upon academic study and reasonable steps will be made to enhance a student’s participation in the University’s programs. This subject requires all students to actively and safely participate in laboratory activities. (Include this or an alternative subject-specific statement if appropriate). Students who feel their disability may impact upon their participation are encouraged to discuss this with the subject coordinator and the Disability Liaison Unit. |
Coordinator
Assoc Prof Uta WilleContact
Director of Third Year Studies
Subject Overview: |
The concepts of quantum chemistry, statistical mechanics, molecular interactions and reaction kinetics will lay the fundamentals for the discussion of chemical reactions involving various types of reactive intermediates. The application of molecular orbital theory will be used to understand the nature of pericyclic reactions and the concept of coordination in main group (including carbon) and transition metal elements. Characterisation of metal complexes using electronic spectroscopy. Discussion of synthetic aspects will cover methods for carbon-carbon bond formation and functional group transformations, as well as principles of catalysis involving transition metal complexes and their chemistry in synthetic and biological systems. |
---|---|
Objectives: |
The subject builds on the skills base established in 610-285 Structure and Properties. Students will develop the conceptual framework needed to rationalise chemical reactivity in contexts ranging from isolated molecules, macromolecules to surface chemistry. Important spectroscopic methods that underpin emerging areas of research in fields as diverse as materials science and biotechnology are introduced. Upon completion, students will have obtained the chemical knowledge that enables them to successfully specialize in all different areas of chemical sciences. |
Assessment: |
Four to six short tests each of duration less than 1 hour conducted on-line during the semester using the learning management system (LMS) for a total of 20% and a three-hour end of semester exam (80%) |
Prescribed Texts: |
|
Breadth Options: | This subject potentially can be taken as a breadth subject component for the following courses: You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
At the completion of this subject students should have developed the following generic skills:
|
Notes: | This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course. |
Related Course(s): |
Bachelor of Science |
Related Majors/Minors/Specialisations: |
Chemical Biotechnology Chemical Physics Chemistry Medicinal Chemistry |
Download PDF version.