Computational Biomechanics

Subject 436-419 (2009)

Note: This is an archived Handbook entry from 2009. Search for this in the current handbook

Credit Points: 12.50
Level: 4 (Undergraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2009:

Semester 2, - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: Thirty-six hours of lectures and 12 hours of tutorials
Total Time Commitment: Not available
Prerequisites:

620-143 Applied Mathematics or equivalent, 436-202 Mech­anics 1

Corequisites: None
Recommended Background Knowledge: None
Non Allowed Subjects: None
Core Participation Requirements:

For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry.

It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability

Coordinator

Prof Marcus Pandy
Subject Overview:

On completion of this subject students should gain an understanding of the structure and function of the skeletal, muscular, and sensory systems of the human body. Students should also be able to formulate simple, integrative models of the human neuromusculoskeletal system; and to use computational models of the human body to analyse muscle function during activities like standing, walking, running and jumping.

Objectives: -
Assessment:

One 2-hour end of semester written exam (40%) a 1-hour mid-term exam (20%) and four homework assignments distributed throughout the semester (40%).

Prescribed Texts: None
Recommended Texts:

Information Not Available

Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:

Information Not Available

Related Course(s): Bachelor of Engineering (Biomedical) Biomechanics
Bachelor of Engineering (EngineeringManagement)Mechanical&Manufacturing
Bachelor of Engineering (Mechanical &Manufacturing)& Bachelor of Science
Bachelor of Engineering (Mechanical &Manufacturing)/Bachelor of Commerce
Bachelor of Engineering (Mechanical and Manufacturing Engineering)
Bachelor of Engineering (Mechatronics) and Bachelor of Computer Science

Download PDF version.