Linear Regression
Subject MAST90102 (2016)
Note: This is an archived Handbook entry from 2016.
Credit Points: | 12.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2016: Semester 2, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 30 hours Total Time Commitment: 170 hours | ||||||||||||
Prerequisites: |
| ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry. It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and the Disability Liaison Unit: http://www.services.unimelb.edu.au/disability/ |
Coordinator
Assoc Prof Julie SimpsonContact
Melbourne School of Population and Global Health
OR
Currently enrolled students:
- General information: https://ask.unimelb.edu.au
- Email: enquiries-STEM@unimelb.edu.au
Future Students:
- Further Information: http://mspgh.unimelb.edu.au/
- Email: Online Form
Subject Overview: |
This subject provides the foundation for regression modelling. Topics covered include: the method of least squares; regression models and related statistical inference; flexible nonparametric regression; analysis of covariance to adjust for confounding; multiple regression with matrix algebra; model construction and interpretation (use of indicator variables, parameterisation, interaction and transformations); model checking and diagnostics; regression to the mean; handling of baseline values; the analysis of variance; variance components and random effects. |
---|---|
Learning Outcomes: |
To enable students to apply methods based on linear models to biostatistical data analysis, with proper attention to underlying assumptions and a major emphasis on the practical interpretation and communication of results. |
Assessment: |
|
Prescribed Texts: |
Resources Provided to Students online: Course notes and assignments. |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
|
Related Course(s): |
Graduate Diploma in Biostatistics Master of Biostatistics |
Download PDF version.