Neural Information Processing
Subject BMEN90002 (2016)
Note: This is an archived Handbook entry from 2016.
Credit Points: | 12.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2016: Semester 2, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 3 hours lecture, one hour tutorial per week and up to 24 hours of laboratories. Total Time Commitment: 200 hours | ||||||||||||
Prerequisites: |
Prerequisite for this subject is:
Subject Study Period Commencement: Credit Points: (prior to 2015 BMEN30006 Fundamentals of Biosignals) OR
Subject Study Period Commencement: Credit Points: OR equivalent | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: |
Anti-requisites for this subject are:
Subject | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/ |
Subject Overview: |
AIMS This subject introduces students to the basic mechanisms of information processing and learning in the brain and nervous system. The subject builds upon signals and systems modelling approaches to demonstrate the application of mathematical and computation modelling to understanding and simulating neural systems. Aspects of neural modelling that are introduced include: membrane potential, action potentials, neural coding, neural models and neural learning. The application of neural information processing is demonstrated in areas such as: electrophysiology, and neuroprostheses. Material is reinforced through MATLAB and/or NEURON based laboratories. INDICATIVE CONTENT Topics include: Neural information processing analysed using information theoretic measures; generation and propagation of action potentials (spikes); Hodgkin-Huxley equations; coding and transmission of neural information (spiking rate, correlation and synchronisation); neural models (binary, rate based, integrate & fire, Hodgkin-Huxley, and multicompartmental); synaptic plasticity and learning in biological neural systems (synaptic basis of learning, short term, medium term and long term, and rate based Hebbian learning models); spike-timing dependent plasticity (STDP) of synapses; higher order neural pathways and systems (cortical structure and circuits).
|
---|---|
Learning Outcomes: |
INTENDED LEARNING OUTCOMES (ILO) On successful completion of this subject, students should be able to: 1. Describe the structure and function of the nervous system; |
Assessment: |
Hurdle requirement: Students must pass the end of semester examination to pass the subject. |
Prescribed Texts: | None |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
On completion of this subject, students should have developed the following generic skills:
|
Notes: |
LEARNING AND TEACHING METHODS The subject is delivered through lectures, tutorials and computer laboratory classes. INDICATIVE KEY LEARNING RESOURCES Students are provided with lecture slides, tutorials and worked solutions, laboratory sheets, and reference text lists. CAREERS / INDUSTRY LINKS Exposure to neural information processing in industry is provided through research laboratory visits to medical research institutes and guest lectures by representatives of industry, hospitals and research institutes. |
Related Majors/Minors/Specialisations: |
Master of Engineering (Biomedical with Business) Master of Engineering (Biomedical) |
Download PDF version.