Longitudinal and Correlated Data

Subject POPH90123 (2015)

Note: This is an archived Handbook entry from 2015.

Credit Points: 12.5
Level: 9 (Graduate/Postgraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2015:

Semester 1, Parkville - Taught online/distance.
Pre-teaching Period Start not applicable
Teaching Period 02-Mar-2015 to 31-May-2015
Assessment Period End 26-Jun-2015
Last date to Self-Enrol 13-Mar-2015
Census Date 31-Mar-2015
Last date to Withdraw without fail 08-May-2015


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: None
Total Time Commitment:

170 hours

Prerequisites:

-

Subject
Study Period Commencement:
Credit Points:
Semester 1, Semester 2
12.50
Semester 1, Semester 2
12.50
Semester 1, Semester 2
12.50
Semester 1, Semester 2
12.50
Corequisites:

None

Recommended Background Knowledge:

None

Non Allowed Subjects:

None

Core Participation Requirements:

For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry.
The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website.

Coordinator

Prof John Carlin

Contact

john.carlin@unimelb.edu.au

OR

Academic Programs Office
Melbourne School of Population and Global Health
Tel: +61 3 8344 9339
Fax: +61 3 8344 0824
Email: sph-gradinfo@unimelb.edu.au

OR

Biostatistics Collaboration of Australia
Email: bca@ctc.usyd.edu.au
Website: www.bca.edu.au

Subject Overview:

Topics covered: Paired data; the effect of non-independence on comparisons within and between clusters of observations; methods for continuous outcomes: normal mixed effects (hierarchical or multilevel) models and generalised estimating equations (GEE); role and limitations of repeated measures ANOVA; methods for discrete data: GEE and generalized linear mixed models (GLMM); methods for count data.


Learning Outcomes:

To enable students to apply appropriate methods to the analysis of data arising from longitudinal (repeated measures) epidemiological or clinical studies, and from studies with other forms of clustering (cluster sample surveys, cluster randomised trials, family studies) that will produce non-exchangeable outcomes.

Assessment:
  • Two major assignments due in week 7 and end of semester (30% each)
  • Five short assignments (approx 3 hours of work each) due throughout the semester (8% each)
Prescribed Texts:

None

Recommended Text:
Fitzmaurice G, Laird N, Ware J. Applied Longitudinal Analysis. John Wiley and Sons, 2004. (ISBN 978-0-471-21487-8)

Resources Provided to Students: Printed course notes and assignment material by mail, email, and online interaction facilities.

Special Computer Requirements: Stata and SAS statistical software

Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:
  • Independent problem solving;
  • facility with abstract reasoning;
  • clarity of written expression;
  • sound communication of technical concepts.
Links to further information: http://www.sph.unimelb.edu.au
Notes:

This subject is not available in the Master of Public Health.

Related Course(s): Master of Biostatistics
Postgraduate Certificate in Biostatistics
Postgraduate Diploma in Biostatistics

Download PDF version.