Advanced Fluid Dynamics
Subject MCEN90018 (2015)
Note: This is an archived Handbook entry from 2015.
Credit Points: | 12.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2015: Semester 1, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 36 hours lectures, 12 hours tutorials and workshops, 4 hours laboratory work Total Time Commitment: 200 hours | ||||||||||||
Prerequisites: |
Subject Study Period Commencement: Credit Points: | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit |
Subject Overview: |
AIMS The study of fluid dynamics is one of the fundamental disciplines in Mechanical Engineering. In the first part of the course, students will learn about boundary-layer theory, which is a key element of aerodynamic design. A guest-lecture series on wind engineering will build on this knowledge to give students a perspective on one of the most important forms of renewable energy in our society today. In the second part of the course, students will learn about data acquisition and analysis. These skills are required of engineers working with the technology of today and into the future. The course will help students understand the costs, difficulties and possibilities afforded by sensor systems and instrumentation, with applications for, but not limited to, fluid dynamics.
Unit 1: Turbulence and boundary layers. Topics covered include Navier-Stokes equations applied to wall-bounded flows, similarity solutions of the boundary-layer equations, Blasius solution, Falkner-Skan solution, separated flows, turbulent boundary layers, Reynolds-averaged Navier-Stokes equations, dimension analysis, pipe friction, Von Karman momentum integral equation, roughness. Unit 2: Experimental techniques. Through a series of lectures, labs and assignments, students will be introduced to key concepts of experimental (and numerical) techniques related to fluid mechanics. Topics will include: data analysis (to include correlations, discrete Fourier transform, energy spectra); Particle Image Velocimetry (PIV); hot-wire anemometry; advanced potential flow numerical techniques.
|
---|---|
Learning Outcomes: |
INTENDED LEARNING OUTCOMES (ILOs)
|
Assessment: |
|
Prescribed Texts: | None |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
On completion of this unit a student is expected to have the skills to:
|
Notes: |
LEARNING AND TEACHING METHODS The subject will be delivered through a combination of lectures, guest lectures, tutorials and laboratory demonstrations. The laboratory classes and tutorials are highly interactive and computer software will be used during lectures and laboratory classes.
CAREERS / INDUSTRY LINKS Clean Energy Council: Ms Alicia Webb presents three lectures on wind engineering
|
Related Course(s): |
Master of Philosophy - Engineering Ph.D.- Engineering |
Related Majors/Minors/Specialisations: |
Master of Engineering (Mechanical) |
Download PDF version.