Bioprocess Engineering
Subject CHEN90031 (2014)
Note: This is an archived Handbook entry from 2014.
Credit Points: | 12.50 |
---|---|
Level: | 9 (Graduate/Postgraduate) |
Dates & Locations: | This subject is not offered in 2014. |
Time Commitment: | Contact Hours: 3 x one hour lectures + 1 x one hour tutorial per week + 2 x two hour practical work sessions per semester Total Time Commitment: Estimated 200 hours |
Prerequisites: |
Students should have completed the following subject prior to enrolling in this subject: |
Corequisites: | None |
Recommended Background Knowledge: | None |
Non Allowed Subjects: |
Credit will not be given for this subject and the following subjects: CHEN90009 Fermentation Processes BTCH90006 Bioprocess Engineering CHEN30014 Bioprocess Engineering |
Core Participation Requirements: |
For the purposes of considering applications for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005) and Students Experiencing Academic Disadvantage Policy, this subject requires all students to actively and safely participate in laboratory activities. Students who feel their disability may impact upon their participation are encouraged to discuss this with the Subject Co-ordinator and the Disability Liaison Unit http://www.services.unimelb.edu.au/disability/ |
Contact
Email: davided@unimelb.edu.au
Subject Overview: |
AIMS Understanding of: basic microbiology, cell structure and nutritional requirements. Products from microbes and bioprocesses, enzyme kinetics, cell growth kinetics and product formation. Product separation methods.
INDICATIVE CONTENT Enzymic process. Michaelis-Menten approach. Kinetics of enzyme inhibition. Immobilised enzymes. Batch microbial growth and product formation. Continuous culture. Microbial growth kinetics. Application of Monod model to batch and chemostat culture. Kinetics of product formation. Maintenance energy and endogenous respiration. Design of fermentation processes. Medium formulation and inoculum preparation. Industrial sterilisation processes. Calculation of sterility level. HTST sterilisation. Design of continuous sterilisers. Air sterilisation. Vessel design for aseptic operation. Fermenter design configurations. Aeration of fermenters. Oxygen requirements of microorganisms. Mixing in fermenters. Biochemical separation processes. Practical work (Microbiology laboratory). |
---|---|
Learning Outcomes: |
INTENDED LEARNING OUTCOMES (ILO) On completion of this subject the student is expected to:
|
Assessment: |
Hurdle requirement: A grade greater than 50% in the exam is required to pass the subject. Intended Learning Outcome (ILO) 1 is addressed through all elements of the assessment. ILO 2 is addressed through the examination and the written assignment. The examination paper will consist of problems designed to test whether the student has acquired the ability to apply fundamental principles to the solutions of problems involving bioprocesses. The problems set for the exam will be similar in style to those undertaken in the tutorial classes, but will require the student to show that they can extend themselves beyond the level of the simpler tutorial problems. |
Prescribed Texts: | None |
Recommended Texts: |
Schuler, M.L. and Kargi F. Bioprocess Engineering – Basic Concepts, 2002 2nd edition, Prentice hall PTD, Upper Saddle River NY |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
|
Notes: |
LEARNING AND TEACHING METHODS The subject will be delivered through a combination of lectures and tutorials. Students will also complete experiments which will reinforce the material covered in lectures.
INDICATIVE KEY LEARNING RESOURCES Students will have access to lecture notes and lecture slides.
CAREERS / INDUSTRY LINKS The skills gained in this subject are crucial to the career of a process engineer. They will be important for students wishing to progress to jobs in engineering design offices and in operational roles within a wide range of industries including petrochemicals, food processing, wastewater treatment and pulp and paper manufacture. |
Related Course(s): |
Master of Biotechnology |
Related Majors/Minors/Specialisations: |
B-ENG Chemical Engineering stream B-ENG Chemical and Biomolecular Engineering stream Master of Engineering (Biochemical) Master of Engineering (Chemical with Business) Master of Engineering (Chemical) |
Download PDF version.