Chemistry: Reactions and Synthesis
Subject CHEM20018 (2013)
Note: This is an archived Handbook entry from 2013.
Credit Points: | 12.50 |
---|---|
Level: | 2 (Undergraduate) |
Dates & Locations: | This subject is not offered in 2013. |
Time Commitment: | Contact Hours: 3 x one hour lectures per week; 1 x one hour tutorial per week; up to 3 x one hour non-compulsory enrichment seminars within normal university hours during the semester. Total 51 hours. Total Time Commitment: Estimated total time commitment of 120 hours |
Prerequisites: | One of Subject Study Period Commencement: Credit Points: |
Corequisites: | None |
Recommended Background Knowledge: | None |
Non Allowed Subjects: |
Students who have completed any one of the following subjects may not also gain credit for this subject:
Students who have completed one of the following subjects may not also gain credit for this subject: Subject |
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. |
Contact
Email: second-year-director@chemistry.unimelb.edu.au
Subject Overview: |
This subject covers key concepts associated with the synthesis and design of organic and inorganic molecules, molecular architecture and the energy transformations associated with chemical and physical processes. Topics covered include synthesis of simple polyfunctional organic compounds, thermodynamically controlled reactions of s-, p- and d- block elements and thermodynamics. In the last three weeks of the subject students will be able to choose between lecture modules with a focus on theory of advanced materials or biological chemistry. These topics have applications in drug discovery, chemical industry, nanotechnology, and energy harnessing through conventional and alternative energy sources.
|
---|---|
Objectives: |
Upon completion of this subject students should:
|
Assessment: |
5 short tests each of duration less than 90 minutes conducted on-line using the learning management system (LMS) for a total of 20%; the tests will run at the end of weeks 3, 5, 7, 9 and 12 and the mark for this component of the assessment will be based on the average of the four highest marks with each tests contributing equally to this component of the assessment. A three hour examination at the end of the semester will contribute 80% to the final grade. |
Prescribed Texts: |
|
Recommended Texts: | None |
Breadth Options: | This subject potentially can be taken as a breadth subject component for the following courses: You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
At the completion of this subject students should have developed the following generic skills:
|
Notes: |
This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course. |
Related Majors/Minors/Specialisations: |
B-ENG Chemical Engineering stream B-ENG Chemical and Biomolecular Engineering stream Chemistry Environmental Science major Environments Discipline subjects Master of Engineering (Biomolecular) Master of Engineering (Chemical) Medicinal Chemistry Science credit subjects* for pre-2008 BSc, BASc and combined degree science courses Science-credited subjects - new generation B-SCI and B-ENG. Core selective subjects for B-BMED. |
Download PDF version.