Nonlinear Systems Theory

Subject ELEN90028 (2013)

Note: This is an archived Handbook entry from 2013.

Credit Points: 12.50
Level: 9 (Graduate/Postgraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2013:

Semester 1, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 24 hours of lectures; Non-contact time commitment: 96 hours
Total Time Commitment:

120 hours

Prerequisites:

Enrolment in a research higher degree(Masters or PhD) in Engineering

Corequisites:

None

Recommended Background Knowledge:

None

Non Allowed Subjects:

None

Core Participation Requirements:

For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/

Contact

Marcus Nathan Brazil

Email: brazil@unimelb.edu.au

Subject Overview:

Topics include: properties of solutions of nonlinear differential equations; Lyapunov stability; linearization; the invariance principle; converse stability theorems; stability of perturbed systems; averaging.

Objectives:

The aim of this subject is to give students an introduction to some advanced topics in the analysis of nonlinear systems. The emphasis of the course is on analysis methods, and in particular on the Lyapunov stability method. Upon completion of the course the students should master some of the most powerful methods used in analysis and design of nonlinear control systems.

Assessment:
  • Continuous assessment of homework assignments, not exceeding 30 pages in total over the semester, worth 40%;
  • Final examination at the end of semester, worth 60%. Students must pass the final exam in order to pass the subject.

Prescribed Texts:

None

Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:
  • Ability to apply knowledge of basic science and engineering fundamentals;
  • In-depth technical competence in at least one engineering discipline;
  • Ability to undertake problem identification, formulation and solution;
  • Ability to utilise a systems approach to design and operational performance;
  • Expectation of the need to undertake lifelong learning, capacity to do so;
  • Capacity for independent critical thought, rational inquiry and self-directed learning;
  • Intellectual curiosity and creativity, including understanding of the philosophical and methodological bases of research activity;
  • Openness to new ideas and unconventional critiques of received wisdom;
  • Profound respect for truth and intellectual integrity, and for the ethics of scholarship
Related Course(s): Master of Philosophy - Engineering
Ph.D.- Engineering

Download PDF version.