Computational Fluid Dynamics
Subject ENGR90024 (2012)
Note: This is an archived Handbook entry from 2012.
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2012: Semester 1, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 3 x one hour lectures + 1 x one hour workshop per week Total Time Commitment: Estimated 120 hours | ||||||||||||
Prerequisites: | Students must have passed the following subject prior to enrolling in this subject: Subject Study Period Commencement: Credit Points: Subject Study Period Commencement: Credit Points: | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: | For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability |
Coordinator
Assoc Prof Malcolm Davidson, Prof Andrew OoiContact
Email: m.davidson@unimelb.edu.au
Email: a.ooi@unimelb.edu.au
Subject Overview: | Ordinary Differential Equations: explicit and implicit methods, stability, systems of ODEs, boundary value problems, MATLAB. Partial Differential Equations: overview, types of equations, boundary conditions, convection-diffusion equations, differencing schemes, finite volume method, stability - von Neumann analysis, error analysis - dispersion, diffusion errors, solving Laplace and Poisson equations, methods for solving Navier-Stokes equations. OpenFoam: fundamentals of OpenFoam - examples, solving simple 2D problems, Laplace and Poisson equations with OpenFoam, solving complex 2D fluid flow problems. C and C++ programming. |
---|---|
Objectives: | On completion of this subject students should be able to:
|
Assessment: |
|
Prescribed Texts: | None |
Recommended Texts: | None |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
|
Related Majors/Minors/Specialisations: |
B-ENG Mechanical Engineering stream Master of Engineering (Biomolecular) Master of Engineering (Chemical) Master of Engineering (Mechanical) Master of Engineering (Mechatronics) |
Download PDF version.