Condensed Matter Physics

Subject PHYC90013 (2011)

Note: This is an archived Handbook entry from 2011.

Credit Points: 12.50
Level: 9 (Graduate/Postgraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2011:

Semester 2, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 36 hours comprising 3 one-hour lectures/week.
Total Time Commitment: Not available
Prerequisites:
  • 640-610 Quantum Mechanics
  • 640-611 Quantum Field Theory
  • A third year subject in statistical physics equivalent to 640-322 Statistical Physics (Advanced) or 640-342 Statistical Physics or 640-384 Statistical Physics.
Corequisites: None
Recommended Background Knowledge: None
Non Allowed Subjects: None
Core Participation Requirements: It is University policy to take all reasonable steps to minimise the impact of disability upon academic study and reasonable steps will be made to enhance a student’s participation in the University’s programs. Students who feel their disability may impact upon their active and safe participation in a subject are encouraged to discuss this with the relevant subject coordinator and the Disability Liaison Unit.

Coordinator

Dr Nicole Bell

Contact

Email: n.bell@unimelb.edu.au
Subject Overview: This subject provides an advanced introduction to condensed matter physics. The general topics covered are (i) experimental and theoretical aspects of the characterisation of condensed matter using eletrons and x-rays and (ii) the quantum model of solids and its relevance to semiconductor and mesoscopic physics. Specific topics covered may include: (i) the imaging of condensed matter at the atomic level and (ii) the determination of how atoms are bonded; (iii) application of imaging beyond the nanoscale; (iv) magnetism; (v) superconductivity; (vi) the properties of semiconductor devices and (vii) mesoscopic systems.
Objectives:

The objectives of this subject are:

  • To challenge the students to expand their knowledge of condensed matter physics and provide a foundation for further advanced studies.
  • To broaden their appreciation of how condensed matter physics integrates into the discipline of physics overall.
  • To develop a deep understanding of how condensed matter is characterised on the atomic scale.
  • To understand the role of quantum effects in micro- and meso-scopic systems and acquire a fundamental understanding of a range of physical phenomena in condensed matter systems.
Assessment: Two assignments totalling up to 36 pages of written work (20%), spaced equally during the semester. One four-hour end-of-semester written examination (80%).
Prescribed Texts:

None

Recommended Texts:

None

Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:

At the completion of this subject, students should have gained skills in:

  • analysing how to solve a problem by applying simple fundamental laws to more complicated situations;
  • applying abstract concepts to real-world situations;
  • solving relatively complicated problems using approximations;
  • participating as an effective member of a group in discussions and collaborative assignments;
  • managing time effectively in order to be prepared for group discussions and undertake the assignments and exam.
Related Course(s): Master of Science (Physics)

Download PDF version.