Advanced Topics in Mech Engineering 2
Subject ENGR90020 (2011)
Note: This is an archived Handbook entry from 2011.
Credit Points: | 12.50 |
---|---|
Level: | 9 (Graduate/Postgraduate) |
Dates & Locations: | This subject is not offered in 2011. |
Time Commitment: | Contact Hours: 24 hours of lectures Total Time Commitment: Estimated 120 hours |
Prerequisites: | None |
Corequisites: | Students must be enrolled in a PhD or Masters by Research |
Recommended Background Knowledge: | None |
Non Allowed Subjects: | None |
Core Participation Requirements: | For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability |
Subject Overview: | Students will be introduced to selected topics from biomechanics, biomaterials, system biology and biorobotics. Students will also appreciate the use of Dynamic Programming, Markov Models and Optimal Control in the above areas. Students will be encouraged to develop critical and constructive thinking via reviewing the latest scientific publications as a part of an assignment to be selected from the above mentioned areas. Biomechanics will focus on the musculoskeletal system for both normal and pathological states. It will introduce quantitative methods to investigate musculoskeletal injuries and diseases (e.g. osteoporosis and osteoarthritis) and discuss the mechanical properties of bone and tissue, gait analysis and orthopaedic implant design. Biomaterials will address different materials (polymers, metals, ceramics and composites) used in contact with living tissue. A main focus in this part is to examine the application of materials in the physiological environment. Topics will include host reaction, testing and degradation of biomaterials in biological environment. System Biology will focus on the big picture discussing regulatory networks and pathways that lead to the changes in cellular and lower levels. Some aspects of Bioinformatics will also be appreciated. Biorobotics will focus of the use of robotics technology in various medical procedures, such as observation, surgical intervention, and rehabilitation / assistance. Current technological challenges will be discussed in view of the state-of-the-arts in the field today. |
---|---|
Objectives: |
Upon completion of this subject students should be able to: |
Assessment: | Assessment for this subject includes:
|
Prescribed Texts: | None |
Recommended Texts: | None |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
On completion of this subject, students should have developed the following generic skills
|
Download PDF version.