Lightwave Systems

Subject ELEN90059 (2011)

Note: This is an archived Handbook entry from 2011.

Credit Points: 12.50
Level: 9 (Graduate/Postgraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2011:

Semester 1, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 36 hours of lectures and up to 24 hours of workshops
Total Time Commitment: 120 hours
Prerequisites:

Prerequisite for this subject is:


Subject
Study Period Commencement:
Credit Points:
Corequisites:

None

Recommended Background Knowledge: None
Non Allowed Subjects:

Anti-requisite for this subject is:

ELEN40009(431-466) RF, Microwave and Optoelectronics

Core Participation Requirements: For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/

Coordinator

Prof Ampalavanapillai Nirmalathas

Contact

Kerry Hinton k.hinton@unimelb.edu.au

Email: elen-subjectenquiry@unimelb.edu.au

Subject Overview: This subject will explore the physical principles and issues that arise in the design of lightwave systems. Students will study topics from: Transmission of light over wave guides; production of light by lasers; light modulation; conversion of light signals to electrical signals; optical multiplexing and demultiplexing; light amplification; dispersion and dispersion compensation; optical nonlinearities; modulation and advanced detection schemes. This material will be complemented by exposure to lightwave systems and measurement techniques in the laboratory.
Objectives: On completing this subject the student should be able to:
  • Explain the operation of lightwave systems in terms of the underlying physical principles;
  • Quantitatively model and assess the performance of a lightwave system;
  • Conduct laboratory experiments involving lightwave devices in the laboratory.
Assessment:
  • One written examination, not exceeding three hours at the end of semester, worth 70%;
  • Continuous assessment of submitted project work, not exceeding 30 pages over the semester, worth 30%.
Prescribed Texts: TBA
Recommended Texts: None
Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:
  • Ability to apply knowledge of basic science and engineering fundamentals
  • In-depth technical competence in at least one engineering discipline
  • Ability to undertake problem identification, formulation and solution
  • Ability to utilise a systems approach to design and operational performance
  • Capacity for independent critical thought, rational inquiry and self-directed learning
  • Ability to communicate effectively, with the engineering team and with the community at large
Notes:

Credit may not be obtained for both

ELEN40009(431-466) RF, Microwave and Optoelectronics and ELEN90059 Lightwave Systems

Related Course(s): Bachelor of Engineering (Computer Engineering)
Bachelor of Engineering (Electrical Engineering)
Bachelor of Engineering (Electrical) and Bachelor of Arts
Bachelor of Engineering (Electrical) and Bachelor of Commerce
Bachelor of Engineering (EngineeringManagement) Electrical
Master of Telecommunications Engineering
Postgraduate Certificate in Engineering
Related Majors/Minors/Specialisations: B-ENG Electrical Engineering stream
Master of Engineering (Electrical)

Download PDF version.