Bionanoengineering
Subject BIEN30001 (2011)
Note: This is an archived Handbook entry from 2011.
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 3 (Undergraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2011: Semester 2, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 3 x one hour lectures per week + 1 x one hour tutorial per week Total Time Commitment: Estimated 120 Hours | ||||||||||||
Prerequisites: | Students must have taken the following subjects prior to enrolling in this subject: Subject Study Period Commencement: Credit Points: Subject Study Period Commencement: Credit Points: | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: |
None
| ||||||||||||
Non Allowed Subjects: | BMEN90012 (411-652) Bionanoengineering | ||||||||||||
Core Participation Requirements: | For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/ |
Subject Overview: |
Nanotechnology and bionanotechnology, history and definition, fine particle fluids, colloidal dispersions and emulsions. The role of surfaces in processing and materials manufacture. Coagulation, electrokinetics, nano-particle dispersion and stability criterion. Inter-particle forces and parameters that influence flow and gelation properties. The role of molecular additives in controlling inter-particle forces and stability. Nano-particle characterisation using light scattering. Solution properties of polymers, macromolecules, self assembly surfactants, lipids, proteins and polysaccharides. The role of self assembly in the formation of structured nano and biomaterials. Cell assembly and molecular components. Nano-particle formation through precipitation. Surface layer structure, functionionalisation and biocompatibility of nano-particles for pharmaceutical, drug delivery biossay, biosensor and immunology applications. Safety and ethical issues in bionanotechnology. |
---|---|
Objectives: | On completion of this course students should be able to:
|
Assessment: |
|
Prescribed Texts: | Larson R.G. The Structure and Rheology of Complex Fluids |
Breadth Options: | This subject potentially can be taken as a breadth subject component for the following courses: You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: | The subject will enhance the following generic skills:
|
Related Majors/Minors/Specialisations: |
B-ENG Chemical Engineering stream B-ENG Chemical and Biomolecular Engineering stream Master of Engineering (Chemical) |
Download PDF version.