Computational Genomics

Subject COMP90016 (2010)

Note: This is an archived Handbook entry from 2010.

Credit Points: 12.50
Level: 9 (Graduate/Postgraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2010:

Semester 1, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 36 hours, made up of 24 one-hour lectures (two per week) and 12 one-hour workshops (one per week)
Total Time Commitment: 120 hours
Prerequisites:

None

Corequisites: None
Recommended Background Knowledge: One semester computer programming, or equivalent experience.
Non Allowed Subjects: 433-451 Computational Genomics
Core Participation Requirements:

For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry.The University is dedicated to provide support to those with special requirements. Further details on the Disability support scheme can be found at the Disability Liaison Unit Website: http://www.services.unimelb.edu.au/disability/

Coordinator

Dr Linda Stern

Contact

Melbourne School of Engineering Office
Building 173, Grattan Street
The University of Melbourne
VIC 3010 Australia
General telephone enquiries
+ 61 3 8344 6703
+ 61 3 8344 6507
Facsimiles
+ 61 3 9349 2182
+ 61 3 8344 7707
Email
eng-info@unimelb.edu.au

Subject Overview:

Topics covered include:

  • Computational issues in physical mapping of DNA, in genome annotation, and in analyzing gene expression data;
  • Motif extraction; methods for determining phylogenetic trees;
  • RNA structure determination;
  • And protein structure determination.
Objectives:

On completion of this subject students should be able to:

  • Describe current research issues in bioinformatics
  • Describe the most commonly used approaches to processing genomic data, their theoretical underpinnings, and their strengths and limitations
  • Outline a variety of algorithms used for processing genomic data
  • Select algorithms appropriate to a given application
  • Critically evaluate the results obtained using different bioinformatics techniques to process genomic data
  • Write a simple bioinformatics computer program and use bioinformatics programming libraries
  • Describe the role of information theory in analysis of biological data
Assessment: Four assignments spread over the semester, totaling 5,000 words or equivalent (30%), and one 2-hour end-of-semester written examination (70%). To pass the subject, students must obtain a mark of at least 35/70 on the exam and 15/30 for the assignments.
Prescribed Texts:

TBA

Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:

On completion of ths subject the student should have the:

  • Ability to undertake problem identification, formulation, and solution
  • Ability to utilise a systems approach to complex problems and to design and operational performance
  • Ability to manage information and documentation
  • Capacity for creativity and innovation
  • Ability to communicate effectively, with the engineering team and with the community at large
Related Course(s): Bachelor of Computer Science (Honours)
Master of Biomedical Engineering
Master of Engineering in Distributed Computing
Master of Software Systems Engineering
Postgraduate Certificate in Engineering

Download PDF version.