Mathematics: Modelling & Problem Solving
Subject EDUC90618 (2010)
Note: This is an archived Handbook entry from 2010.
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2010: Semester 2, Parkville - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 24 hours Total Time Commitment: 125 hours | ||||||||||||
Prerequisites: | None | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: | Attendance at all classes (tutorial/seminars/practical classes/lectures/labs) is obligatory. Failure to attend 80% of classes will normally result in failure in the subject. |
Coordinator
Assoc Prof Helen ChickContact
Education Student CentreSubject Overview: | This subject will focus on research and issues related to the teaching and learning of mathematics in primary and secondary classrooms through the use of problem solving and mathematical modelling. Modelling and problem solving are seen as approaches to teaching mathematics, ways of doing mathematics and mathematical content in their own right. They focus particularly on questions related to how we think mathematically and learn more deeply in a mathematical environment that emphasises big ideas in mathematics teaching. Topics include: trends in mathematical modelling and problem solving research; attitudes to and conceptions of problem solving and modelling; problem solving and modelling and working mathematically; interdisciplinarity; assessment; developing challenging tasks to increase cognitive demand; managing the problem solving/modelling classroom; teaching students to address a challenge; raising the level of mathematical competence required for informed citizenship and lifelong learning; increasing students’ confidence in using mathematics to solve problems; the role of technology in facilitating modelling and problem solving. |
---|---|
Objectives: |
Students completing this course should be able to:
|
Assessment: |
|
Prescribed Texts: | Collected readings or a list to suit most likely interests. These would include as recommended readings: Blum, W., Galbraith, P., Niss, M., Henn, H.-W. (Eds.). (2007). Modelling and applications in mathematics education, New ICMI Studies Series no. 10. New York: Springer. Clarke, D. J., Goos, M., & Morony, W. (2007). Problem solving and working mathematically: An Australian perspective. ZDM—The International Journal on Mathematical Education, 39(5-6), 475-490. Lesh, R., & Zawojewski, J. (2007). Problem solving and modelling. In F. Lester (Ed.), Second handbook of research o mathematics teaching and learning (pp. 763-804). Charlotte, NC: IAP. Stillman, G. A., Brown, J. P., & Galbraith, P. L. (2008). Research into the teaching and learning of applications and modelling in Australasia. In H. Forgasz, A. Barkatsas, A. Bishop, B. Clarke, S. Keast, W-T. Seah, & P. Sullivan (Eds.), Research in mathematics education in Australasia 2004-2007 (pp. 141-164). Rotterdam, The Netherlands: Sense Publishers. Stillman, G., Cheung, K-C., Mason, R., Sheffield, L., Sriraman, B., & Ueno, K. (2009). Challenging mathematics: Classroom practices. In E. Barbeau & P. Taylor (Eds.), Challenging mathematics in and beyond the classroom: The 16th ICMI study, New ICMI Studies Series no. 12 (pp. 243-283). New York: Springer. |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: | Students completing this course should be able to:
|
Related Course(s): |
Master of Education (Stream 100B)Coursework Master of Education (Stream 150) |
Download PDF version.