Chemistry 4A

Subject CHEM90009 (2010)

Note: This is an archived Handbook entry from 2010.

Credit Points: 12.50
Level: 9 (Graduate/Postgraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2010:

Semester 1, Parkville - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable


Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: 30 hours in total comprising 2 x 1 hour lectures per week and 6 x 1 hour tutorials per semester. Estimated total time commitment of 120 hours per semester.
Total Time Commitment: Not available
Prerequisites: None
Corequisites: None
Recommended Background Knowledge: None
Non Allowed Subjects: None
Core Participation Requirements:

For the purposes of considering requests for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements for this entry.

The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/

Coordinator

Assoc Prof Craig Hutton

Contact

Telephone: 8344 2393
Email: chutton@unimelb.edu.au
Subject Overview:

Students enrolling in this subject must choose two of the following 12-lecture modules:

Advanced Organic Synthesis
This module will outline some of the major methods of organic synthesis including asymmetric aldol and related reactions, sigmatropic rearrangements and metal-catalysed transformations. Applications in the synthesis of important chiral molecules will be discussed.

Free Radicals in Synthesis
This module will outline the fundamental steps important to radical chain chemistry and show how these principles can be used in the total synthesis of important molecular frameworks.

Lasers in Chemistry
This module will discuss general principles of laser action, the properties of laser beams, some specific types of lasers, laser-based spectroscopic methods, laser photochemistry, ultrafast lasers, and lasers in mass spectrometry.

Photochemistry and Electrochemistry in Synthesis
This module will explore the application of photochemistry and electrochemistry in synthesis, focussing on reactive intermediates (e.g. radicals and ions) which are accessible only with difficulty using standard methods. Applications of these techniques in chemical synthesis will be presented.

Magnetism in Chemistry
This module will explore magnetochemistry in the context of isolated spins, discrete spin clusters and extended systems. Areas covered will include magnetic susceptibility, the mechanisms of magnetic exchange interactions, long range ordering in extended solids, spin crossover complexes and single-molecule magnets.

Objectives: The objectives of this subject are to provide students with an increased knowledge and understanding of advanced chemical principles, with emphasis on:

  • asymmetric synthetic methods;
  • electro- and photo-chemical principles;
  • magnetochemistry and spin systems; and
  • laser photochemistry.

Such knowledge will facilitate insights into the structure and properties of matter and the nature of chemical transformations.

Assessment:

Each module will be assessed by either;

  • a 1.5 hour exam after completion of the module, or
  • a 1.5 hour exam after completion of the module (80%) and an assignment (2000 words, 20%) due mid-semester, or
  • a 1.5 hour exam after completion of the module (80%) and a 15 minute oral presentation mid-semester (20%).


Prescribed Texts: None
Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:

At the completion of this subject, students will gain skills in:

  • advanced problem-solving and critical thinking skills
  • an ability to evaluate the professional literature
  • an understanding of the changing knowledge base
  • a capacity to apply concepts developed in one area to a different context
  • the ability to use conceptual models to rationalize experimental observations.
Related Course(s): Master of Science (Chemistry)

Download PDF version.