Condensed Matter Physics
Subject 640-615 (2009)
Note: This is an archived Handbook entry from 2009. Search for this in the current handbook
Credit Points: | 12.50 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | 9 (Graduate/Postgraduate) | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2009: Semester 2, - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 36 hours comprising 3 one-hour lectures/week. Total Time Commitment: Not available | ||||||||||||
Prerequisites: |
| ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry. It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability |
Coordinator
Dr Nicole BellSubject Overview: | This subject provides an advanced introduction to condensed matter physics. The general topics covered are (i) experimental and theoretical aspects of the characterisation of condensed matter using eletrons and x-rays and (ii) the quantum model of solids and its relevance to semiconductor and mesoscopic physics. Specific topics covered may include: (i) the imaging of condensed matter at the atomic level and (ii) the determination of how atoms are bonded; (iii) application of imaging beyond the nanoscale; (iv) magnetism; (v) superconductivity; (vi) the properties of semiconductor devices and (vii) mesoscopic systems. |
---|---|
Objectives: |
The objectives of this subject are:
|
Assessment: | Two assignments totalling up to 36 pages of written work (20%), spaced equally during the semester. One 15 minute presentation, to be held at the end of semester, on a topic chosen by the student with guidance from the lecturer (10%). One four-hour end-of-semester written examination (70%). |
Prescribed Texts: | Nil. |
Recommended Texts: | Nil. |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: |
At the completion of this subject, students should have gained skills in:
|
Related Majors/Minors/Specialisations: |
R05 RP Master of Science - Physics |
Download PDF version.