Heat and Mass Transport Processes 2

Subject 411-441 (2009)

Note: This is an archived Handbook entry from 2009. Search for this in the current handbook

Credit Points: 12.50
Level: 4 (Undergraduate)
Dates & Locations:

This subject has the following teaching availabilities in 2009:

Semester 1, - Taught on campus.
Pre-teaching Period Start not applicable
Teaching Period not applicable
Assessment Period End not applicable
Last date to Self-Enrol not applicable
Census Date not applicable
Last date to Withdraw without fail not applicable

Timetable can be viewed here. For information about these dates, click here.
Time Commitment: Contact Hours: Forty-eight hours
Total Time Commitment: Not available

411-331 Heat and Mass Transport Processes 1

Corequisites: None
Recommended Background Knowledge: None
Non Allowed Subjects: None
Core Participation Requirements:

For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry.

It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability


Assoc Prof Ray Dagastine
Subject Overview:

Content: Heat transport processes radiation: basic principles of radiation; shape factors (viewfactors); radiation between grey surfaces in the network approach; applications of networks for various situations. Conduction: Fourier's Law of heat conduction; multi-dimensional heat transfer equations; steady-state heat conduction and the Laplace equation; steady-state conduction with distributed heat source and the Poisson equation; simplified equation for steady-state heat conduction; fins; transient heat conduction and the diffusion equation; examples of simple solution of transient heat conduction; brief introduction to numerical methods for heat conduction problems. Mass transport processes: Multicomponent distillation, including short cut and rigorous techniques for the prediction of column performance. Solvent extraction, including the effect of axial dispersion. Adsorption and ion exchange - types of absorbents, fixed bed adsorber models, isothermal equilibrium and non-equilibrium design and operation. Mass transfer with chemical reaction, homogeneous and heterogeneous reactions, and application to equipment performance and design. Application of simultaneous heat and mass transfer to separation processes. Membrane separation processes and separation processes used in biotechnology.


Students successfully completing this subject will be able to apply the principles of heat transfer to conduction and radiation heat transfer problems and to analyse and design separation operations including adsorption and ion exchange, multicomponent distillation, simultaneous mass and heat transfer, membrane separation processes and mass transfer with chemical reaction.


One written 3-hour end-of-semester examination (70%); a written 1-hour mid-semester test (15%); five problem sheets distributed across the semester (15%). An overall mark of 50% and a mark of 40% or more in the end of semester examination are needed to pass the subject.

Prescribed Texts: None
Recommended Texts:

Information Not Available

Breadth Options:

This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:
  • ability to apply knowledge of basic science and engineering fundamentals

  • in-depth technical competence in at least one engineering discipline

  • ability to undertake problem identification, formulation and solution

  • ability to utilise a systems approach to design and operational performance

Related Course(s): Bachelor of Engineering (Chemical Engineering)
Bachelor of Engineering (Chemical and Biomolecular Engineering)
Bachelor of Engineering (Chemical) and Bachelor of Arts
Bachelor of Engineering (Chemical) and Bachelor of Commerce
Bachelor of Engineering (Chemical) and Bachelor of Laws
Bachelor of Engineering (Chemical) and Bachelor of Science
Bachelor of Engineering (EngineeringManagement) Chemical
Bachelor of Engineering(Biochemical Engineering)and Bachelor of Science

Download PDF version.