Human Language Technology
Subject 433-660 (2008)
Note: This is an archived Handbook entry from 2008.Search for this in the current handbook
Credit Points: | 12.500 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level: | Graduate/Postgraduate | ||||||||||||
Dates & Locations: | This subject has the following teaching availabilities in 2008: Semester 1, - Taught on campus.
Timetable can be viewed here. For information about these dates, click here. | ||||||||||||
Time Commitment: | Contact Hours: 24 hours of lectures and 12 hours of workshops; Non-contact time commitment: 84 hours Total Time Commitment: Not available | ||||||||||||
Prerequisites: | Either an undergraduate degree in Computer Science, Computer Engineering, Software Engineering, Information Technology or related discipline; or at least four Group A Masters subjects | ||||||||||||
Corequisites: | None | ||||||||||||
Recommended Background Knowledge: | None | ||||||||||||
Non Allowed Subjects: | None | ||||||||||||
Core Participation Requirements: |
For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic requirements for this subject are articulated in the Subject Overview, Learning Outcomes, Assessment and Generic Skills sections of this entry. It is University policy to take all reasonable steps to minimise the impact of disability upon academic study, and reasonable adjustments will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact on meeting the requirements of this subject are encouraged to discuss this matter with a Faculty Student Adviser and Student Equity and Disability Support: http://services.unimelb.edu.au/disability |
Coordinator
Associate Professor Steven BirdSubject Overview: | Topics covered include the linguistics of words and phrases, part-of-speech tagging, finite-state transducers, chart parsing and chunk parsing, hidden Markov models, n-gram language models, spelling and grammar checking, collocation analysis, word-sense disambiguation, text retrieval, information extraction, and machine translation. Programming work will be undertaken in the Python language, and will use NLTK, the Natural Language Toolkit (nltk.sf.net). |
---|---|
Assessment: | Four projects, expected to take about 48 hours, during semester (50%) and a 2-hour end of semester written examination (50%). To pass the subject, students must obtain at least 50% overall, 25/50 in the projects, and 25/50 in the written examination. |
Prescribed Texts: | None |
Breadth Options: | This subject is not available as a breadth subject. |
Fees Information: | Subject EFTSL, Level, Discipline & Census Date |
Generic Skills: | On successful completion, students will be:
|
Notes: | Credit may not be gained for both 433-460 Human Language Technology and 433-660 Human Language Technology. |
Download PDF version.