CHEM90009 Chemical Synthesis & Characterisation 1

Credit Points:	12.5
Level:	9 (Graduate/Postgraduate)
Dates & Locations:	2015, Parkville
	This subject commences in the following study period/s:
	Semester 1, Parkville - Taught on campus.
Time Commitment:	Contact Hours: 30 hours in total comprising two 1-hour lectures per week and six 1-hour
	tutorials per semester. Total Time Commitment: 170 hours.
Prerequisites:	Entry into the Master of Science (Chemistry) (//view/current/mc-sciche);
	Bachelor of Science (Honours) - Chemistry; or
	Graduate Diploma in Science (Advanced) - Chemistry.
	Other students with appropriate Chemistry background may be permitted to enrol with subject coordinator approval.
Corequisites:	None
Recommended	None
Background Knowledge:	
Non Allowed Subjects:	None
Core Participation	For the purposes of considering requests for Reasonable Adjustments under the Disability
Requirements:	Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description,
	Subject Objectives, Generic Skills and Assessment Requirements for this entry. The
	University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://
	www.services.unimelb.edu.au/disability/
Coordinator:	Assoc Prof Craig Hutton
Contact:	Email: chutton@unimelb.edu.au (mailto:chutton@unimelb.edu.au)
Subject Overview:	This subject provides a series of specialised modules in different areas of chemistry. Students must choose two modules. A selection of the following 12-lecture modules will be available:
	Advanced Organic Synthesis
	This module will outline some of the major methods of organic synthesis including asymmetric aldol and related reactions, sigmatropic rearrangements and metal-catalysed transformations.
	Applications in the synthesis of important chiral molecules will be discussed.
	Interfacial Chemistry and Sonochemistry This module will study the production of nanometre-size colloids of metals and polymers using
	ultrasound, and how surface-active solutes affect the yield of the particles produced. The use of
	sonochemistry to decompose organic pollutants will also be discussed.
	Lasers in Chemistry This module will discuss general principles of laser action, the properties of laser beams, some
	specific types of lasers, laser-based spectroscopic methods, laser photochemistry, ultrafast
	lasers, and lasers in mass spectrometry. Automatic Chemical Analysis
	This course will outline advanced methods in the automation of chemical analysis based
	on the use of batch, robotic and flow analysers. There will be a particular emphasis on flow injection and sequential injection analysis, focussing on clinical, industrial and environmental
	applications.
	Atmospheric Chemistry The chemical composition of the Earth's atmosphere is influenced by both natural processes
	and human activities. This course will provide an introduction into the chemistry of the

	atmosphere and explore some important problems, such as acid rain, ozone depletion, photochemical smog, greenhouse gases and global warming.
Learning Outcomes:	The objectives of this subject are to provide students with an increased knowledge and understanding of advanced chemical principles, with emphasis on: # asymmetric synthetic methods; # electro- and photo-chemical principles; # advanced analytical techniques, and # laser photochemistry. Such knowledge will facilitate insights into the structure and properties of matter and the nature of chemical transformations.
Assessment:	Each module will be assessed by either; a 1.5 hour exam after completion of the module, or a 1 hour exam after completion of the module (60%) and an assignment (40%), or a 1.5 hour exam after completion of the module (80%) and a 15 minute oral presentation mid-semester (20%).
Prescribed Texts:	None
Recommended Texts:	None
Breadth Options:	This subject is not available as a breadth subject.
Fees Information:	Subject EFTSL, Level, Discipline & Census Date, http://enrolment.unimelb.edu.au/fees
Generic Skills:	At the completion of this subject, students will gain skills in: # advanced problem-solving and critical thinking skills # an ability to evaluate the professional literature # an understanding of the changing knowledge base # a capacity to apply concepts developed in one area to a different context # the ability to use conceptual models to rationalize experimental observations.
Related Course(s):	Master of Philosophy - Engineering Master of Science (Chemistry) Ph.D Engineering
Related Majors/Minors/ Specialisations:	Chemistry Chemistry Honours Program - Chemistry