Quantum Physics

Subject PHYC30018 (2013)

Note: This is an archived Handbook entry from 2013.

Credit Points: 12.50
Level: 3 (Undergraduate)
Dates & Locations:

This subject is not offered in 2013.

Time Commitment: Contact Hours: 2 to 4 hours per week, 36 in total, lectures and problem-solving classes
Total Time Commitment: Estimated total time commitment of 120 hours
Prerequisites:

Physics

All three of

Subject
Study Period Commencement:
Credit Points:
Not offered in 2013
12.50

(PHYC20009 Thermal and Classical Physics may be taken concurrently)

OR
one of

  • 640-223 Quantum Mechanics & Thermal Physics (prior to 2009)
Subject
Study Period Commencement:
Credit Points:

And Mathematics

Either both of

Subject
Study Period Commencement:
Credit Points:
Not offered in 2013
12.50
Not offered in 2013
12.50
Or both
Subject
Study Period Commencement:
Credit Points:
Not offered in 2013
12.50
Not offered in 2013
12.50

Or for students who completed level 2 mathematics prior to 2010:

  • 620-296 Multivariable & Vector Calculus (prior to 2010)

Or for students who completed level 2 mathematics prior to 2009:

One of

  • 620-231 Vector Analysis (prior to 2009)
  • 620-233 Vector Analysis Advanced (prior to 2009)
  • MAST20009 Vector Calculus

And one of

  • 620-232 Mathematical Methods (prior to 2010)
  • 620-234 Mathematical Methods Advanced (prior to 2009).

Corequisites: None
Recommended Background Knowledge: None
Non Allowed Subjects:

Students may only gain credit for one of

  • PHYC30018 Quantum Physics
  • 640-321 Quantum Mechanics Advanced (prior to 2010)
  • 640-341 Quantum Mechanics (prior to 2009)
Core Participation Requirements: It is University policy to take all reasonable steps to minimise the impact of disability upon academic study and reasonable steps will be made to enhance a student's participation in the University's programs. Students who feel their disability may impact upon their active and safe participation in a subject are encouraged to discuss this with the relevant subject coordinator and the Disability Liaison Unit.
Subject Overview:

Quantum mechanics plays a central role in our understanding of fundamental phenomena, primarily in the microscopic domain. It lays the foundation for an understanding of atomic, molecular, condensed matter, nuclear and particle physics.

Topics covered include:

  • the basic principles of quantum mechanics (probability interpretation; Schrödinger equation; Hermitian operators, eigenstates and observables; symmetrisation, antisymmetrisation and the Pauli exclusion principle; entanglement)
  • wave packets, Fourier transforms and momentum space
  • eigenvalue spectra and delta-function normalisation
  • Heisenberg uncertainty principle
  • matrix theory of spin
  • the Hilbert space or state vector formation using Dirac bra-ket notation
  • the harmonic oscillator
  • the quantisation of angular momentum and the central force problem including the hydrogen atom
  • approximation techniques including perturbation theory and the variational method
  • applications to atomic and other systems.
Objectives:

Students completing this subject should be able to:

  • explain the basic principles of quantum physics including the probability interpretation, unitary time-evolution, the association of operators with observables, Pauli exclusion principle, and entanglement;
  • solve elementary problems involving intrinsic spin;
  • solve problems by applying quantum mechanical theory to situations involving atoms, molecules, solids, nuclei and elementary particles;
  • appreciate the importance of approximation techniques in quantum mechanics.
Assessment:

Two written assignments each totalling up to an equivalent of 1500 words during the semester (10% each). One poster presentation (10%). A 3-hour written examination in the examination period (70%).

Prescribed Texts: None
Recommended Texts:
  • D J Griffiths Introduction to Quantum Mechanics, 2nd Ed, Pearson Prentice Hall 2005.
  • E Merzbacher, Quantum Mechanics, Wiley
Breadth Options:

This subject potentially can be taken as a breadth subject component for the following courses:

You should visit learn more about breadth subjects and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects.

Fees Information: Subject EFTSL, Level, Discipline & Census Date
Generic Skills:

A student who completes this subject should be able to:

  • analyse how to solve a problem by applying simple fundamental laws to more complicated situations
  • apply abstract concepts to real-world situations
  • solve relatively complicated problems using approximations
  • participate as an effective member of a group in tutorial discussions
  • manage time effectively in order to be prepared for tutorial classes, undertake the written assignments and the examination.
Notes:

This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course.

Related Majors/Minors/Specialisations: Chemical Physics (specialisation of Physics major)
Mathematical Physics
Physics
Physics
Physics (specialisation of Physics major)
Science credit subjects* for pre-2008 BSc, BASc and combined degree science courses
Science-credited subjects - new generation B-SCI and B-ENG. Core selective subjects for B-BMED.

Download PDF version.