PHYC30018 Quantum Physics

Credit Points:	12.5				
Level:	3 (Undergraduate)				
Dates & Locations:	2015, Parkville This subject commences in the following study period/s: Semester 1, Parkville - Taught on campus.				
Time Commitment:	Contact Hours: 2 to 4 hours per week, 36 in total, lectures and problem-solving classes Total Time Commitment: Estimated total time commitment of 170 hours				
Prerequisites:	Physics All three of				
	Subject	Study Period Commencement:	Credit Points:		
	PHYC20010 Quantum Mechanics and Special Relativity	Semester 1	12.50		
	PHYC20011 Electromagnetism and Optics	Semester 2	12.50		
	PHYC20009 Thermal and Classical Physics	Semester 1	12.50		
	(PHYC20009 Thermal and Classical Physics may be taken concurrently) OR				
	Subject	Study Period Commencement:	Credit Points:		
	PHYC20005 Quantum Mechanics & Thermal Physics	Not offered 2015	12.50		
	And Mathematics				
	Subject	Study Period Commencement:	Credit Points:		
	MAST20009 Vector Calculus	Semester 1, Semester 2	12.50		
	And at least one of				
	Subject	Study Period Commencement:	Credit Points:		
	MAST10009 Accelerated Mathematics 2	Semester 2	12.50		
	MAST20026 Real Analysis	Semester 1, Semester 2	12.50		
	MAST20030 Differential Equations	Semester 2	12.50		
Corequisites:	None				
Recommended Background Knowledge:	None				
Non Allowed Subjects:	Students may only gain credit for one of # PHYC30018 Quantum Physics				
Core Participation Requirements:	It is University policy to take all reasonable steps to m academic study and reasonable steps will be made to University's programs. Students who feel their disability	enhance a student's participa	tion in the		

	participation in a subject are encouraged to discuss this with the relevant subject coordinator and the Disability Liaison Unit.	
Coordinator:	Prof Raymond Volkas	
Contact:	Email: <u>PHYC30018@physics.unimelb.edu.au</u> (mailto:PHYC30018@physics.unimelb.edu.au)	
Subject Overview:	Quantum mechanics plays a central role in our understanding of fundamental phenomena, primarily in the microscopic domain. It lays the foundation for an understanding of atomic, molecular, condensed matter, nuclear and particle physics.	
	Topics covered include:	
	 the basic principles of quantum mechanics (probability interpretation; Schrödinger equation Hermitian operators, eigenstates and observables; symmetrisation, antisymmetrisation and the Pauli exclusion principle; entanglement) # wave packets, Fourier transforms and momentum space 	
	# eigenvalue spectra and delta-function normalisation	
	# Heisenberg uncertainty principle	
	# matrix theory of spin	
	# the Hilbert space or state vector formation using Dirac bra-ket notation	
	# the harmonic oscillator	
	 # the quantisation of angular momentum and the central force problem including the hydrogen atom 	
	$_{\#}$ approximation techniques including perturbation theory and the variational method	
	# applications to atomic and other systems.	
Learning Outcomes:	Students completing this subject should be able to:	
	 # explain the basic principles of quantum physics including the probability interpretation, unitary time-evolution, the association of operators with observables, Pauli exclusion principle, and entanglement; # solve elementary problems involving intrinsic spin; 	
	 # solve problems by applying quantum mechanical theory to situations involving atoms, molecules, solids, nuclei and elementary particles; # appreciate the importance of approximation techniques in quantum mechanics. 	
Assessment:	One written assignment to an equivalent of 1500 words during the semester (15%) One poster presentation (15%) A 3-hour written examination in the examination period (70%)	
Prescribed Texts:	None	
Recommended Texts:	 # D J Griffiths Introduction to Quantum Mechanics, 2nd Ed, Pearson Prentice Hall 2005. # E Merzbacher, Quantum Mechanics, Wiley 	
Breadth Options:	This subject potentially can be taken as a breadth subject component for the following courses:	
	# Bachelor of Commerce (https://handbook.unimelb.edu.au/view/2015/B-COM)	
	# Bachelor of Environments (https://handbook.unimelb.edu.au/view/2015/B-ENVS)	
	# <u>Bachelor of Music</u> (https://handbook.unimelb.edu.au/view/2015/B-MUS)	
	You should visit <u>learn more about breadth subjects</u> (http://breadth.unimelb.edu.au/ breadth/info/index.html) and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects.	
Fees Information:	Subject EFTSL, Level, Discipline & Census Date, http://enrolment.unimelb.edu.au/fees	
Generic Skills:	A student who completes this subject should be able to:	
	# analyse how to solve a problem by applying simple fundamental laws to more complicated	

	 # apply abstract concepts to real-world situations # solve relatively complicated problems using approximations # participate as an effective member of a group in tutorial discussions # manage time effectively in order to be prepared for tutorial classes, undertake the written assignments and the examination.
Notes:	This subject is available for science credit to students enrolled in the BSc (both pre-2008 and new degrees), BASc or a combined BSc course.
Related Majors/Minors/ Specialisations:	Chemical Physics (specialisation of Physics major) Mathematical Physics Physics Physics Physics Physics Physics (specialisation of Physics major) Science-credited subjects - new generation B-SCI and B-ENG.