1

ELEN30012 Signals and Systems

Credit Points:	12.5			
Level:	3 (Undergraduate)			
Dates & Locations:	2015, Parkville This subject commences in the following study period/s: July, Parkville - Taught on campus. Semester 2, Parkville - Taught on campus.			
Time Commitment:	Contact Hours: 36 hours of lectures (3 one hour lectures per week) and up to 24 hours of workshops Total Time Commitment: 170 hours			
Prerequisites:	Prerequisites for this subject are			
	Subject	Study Period Commencement:	Credit Points:	
	ELEN20005 Foundations of Electrical Networks	January, Semester 2	12.50	
	PLUS either of the following subjects			
	Subject	Study Period Commencement:	Credit Points:	
	MAST20026 Real Analysis	Semester 1, Semester 2	12.50	
	MAST20029 Engineering Mathematics	Summer Term, Semester 1, Semester 2	12.50	
	PLUS			
	Subject	Study Period Commencement:	Credit Points:	
	COMP20005 Engineering Computation	Semester 1, Semester 2	12.50	
	OR			
	Subject	Study Period Commencement:	Credit Points:	
	BMEN20001 Biomechanical Physics & Computation	Semester 1	12.50	
	OR			
	Subject	Study Period Commencement:	Credit Points:	
	COMP20007 Design of Algorithms	Semester 1	12.50	
	Note: # BMEN20001 is a suitable alternative to COMP20005 or in the B-SCI or the B-BMED undertaking a major in Bio # COMP20005 Engineering Computation may be taken c	COMP20007 for studen engineering Systems. oncurrently.	ts enrolled	
Corequisites:	None			
Recommended Background Knowledge:	Knowledge of the following subjects is recommended			
	Subject	Study Period Commencement:	Credit Points:	

	ELEN30009 Electrical Network Analysis and Design	Semester 1	12.50	
	ELEN30010 Digital System Design	Semester 1	12.50	
Non Allowed Subjects:	431-221 Fundamentals of Signals and Systems			
	Subject	Study Period Commencement:	Credit Points:	
	BMEN30006 Circuits and Systems	Semester 1	12.50	
Core Participation Requirements:	For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http:// www.services.unimelb.edu.au/disability/			
Coordinator:	Dr Robert Schmid			
Contact:	Email: rschmid@unimelb.edu.au(mailto:rschmid@unimelb.edu.au)			
Subject Overview:	AIMS			
	The aim of this subject is twofold: firstly, to develop an understanding of the fundamental tools and concepts used in the analysis of signals and the analysis and design of linear time-invariant systems path in continuous–time and discrete- time; secondly, to develop an understanding of their application in a broad range of areas, including electrical networks, telecommunications, signal-processing and automatic control.			
	The subject formally introduces the fundamental mathematical techniques that underpin the analysis and design of electrical networks, telecommunication systems, signal-processing systems and automatic control systems. Such systems lie at the heart of the electrical engineering technologies that underpin modern society. This subject is one of four that define the Electrical System Major in the Bachelor of Science and it is a core requirement in the Master of Engineering (Electrical). It provides the foundation for various subsequent subjects, including ELEN90057 Communication Systems, ELEN90058 Signal Processing and ELEN90055 Control Systems.			
	INDICATIVE CONTENT			
	Topics include: Signals – continuously and discretely indexed signals, impo domain analysis (Fourier, Laplace and Z transforms), nonlin sampling;	rtant signal types, freque ear transformations and	ency- harmonics,	
	Systems – viewing differential / difference equations as syst notions of input, output and internal signals, block diagrams connections), properties of input-output models (causality, o linearity), transient and steady state behaviour;	ems that process signal (series, parallel and fee lelay, stability, gain, shift	s, the dback -invariance,	
	Linear time-invariant systems – continuous and discrete imp operation, transfer functions and frequency response, time- unstable poles and zeros, state-space models (construction forms, state transformations and stability), and the discretisa continuously indexed signals.	oulse response; convolut domain interpretation of from high-order ODEs, ation of models for syste	tion stable and canonical ms of	
	This material is complemented by exposure to the use of Ma simulation and examples from diverse areas including electric dynamics and economics.	ATLAB for computation a rical engineering, biology	and /, population	
Learning Outcomes:	INTENDED LEARNING OUTCOMES (ILO)			
	Having completed this subject it is expected that the studen	t be able to:		

	 Apply fundamental mathematical tools to model, analyse and design signals and systems in both time-domain and frequency-domain Recognise the broad applicability of the mathematics of signals and systems theory, particularly within electrical engineering Recognize the similarities and differences between the mathematical tools needed for dealing with continuous-time systems/signals versus their discrete-time counterparts Use MATLAB to study the behaviour of signals and systems as they arise in a variety of contexts.
Assessment:	One written examination, not exceeding three hours at the end of semester, worth 60%; Continuous assessment, consisting of project work and assignments, not exceeding 30 pages in total over the semester (approximately 30-35 hours per student), worth 30%; A one hour mid- semester test, worth 10%. Hurdle requirement: Students must pass the written exam to pass the subject. Intended Learning Outcomes (ILOs) 1-3 are assessed in the final written examination, the mid-semester test, assignments and workshop project reports. ILO 4 is assessed as part of the workshop project reports.
Prescribed Texts:	ТВА
Breadth Options:	This subject potentially can be taken as a breadth subject component for the following courses: # Bachelor of Arts (https://handbook.unimelb.edu.au/view/2015/B-ARTS) # Bachelor of Commerce (https://handbook.unimelb.edu.au/view/2015/B-COM) # Bachelor of Environments (https://handbook.unimelb.edu.au/view/2015/B-ENVS) # Bachelor of Music (https://handbook.unimelb.edu.au/view/2015/B-ENVS) # Bachelor of Music (https://handbook.unimelb.edu.au/view/2015/B-MUS) You should visit learn more about breadth subjects (http://breadth.unimelb.edu.au/ breadth/info/index.html) and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects.
Fees Information:	Subject EFTSL, Level, Discipline & Census Date, http://enrolment.unimelb.edu.au/fees
Generic Skills:	On completion of this subject students should have developed the following generic skills: # Ability to apply knowledge of basic science and engineering fundamentals # Ability to undertake problem identification, formulation and solution # Ability to utilise a systems approach to design and operational performance # Ability to communicate effectively, with the engineering team and with the community at large # Capacity for independent critical thought, rational inquiry and self-directed learning # Expectation of the need to undertake lifelong learning, capacity to do so.
Notes:	 LEARNING AND TEACHING METHODS The subject is delivered through lectures and workshop classes that combine both theoretical tutorial and MATLAB programming activities. INDICATIVE KEY LEARNING RESOURCES Students are provided with lecture slides, lecture notes, practice worksheets and answers, a workshop manual and reference text lists. CAREERS / INDUSTRY LINKS Exposure to industry applications via guest lecturers.
Related Majors/Minors/ Specialisations:	B-ENG Electrical Engineering stream Bioengineering Systems Electrical Systems Master of Engineering (Electrical with Business) Master of Engineering (Electrical) Science-credited subjects - new generation B-SCI and B-ENG. Selective subjects for B-BMED