
COMP90053 Program Analysis and Transformation,2015 http://handbook.unimelb.edu.au/view/2015/COMP90053

Page 1 of 3 02/02/2017 8:55 A.M.

COMP90053 Program Analysis and Transformation
Credit Points: 12.5

Level: 9 (Graduate/Postgraduate)

Dates & Locations: This subject is not offered in 2015.

Time Commitment: Contact Hours: 36 hours, comprising of two 1-hour lectures and one 1-hour workshop per week
Total Time Commitment: 200 hours

Prerequisites: One of the following:

Subject Study Period Commencement: Credit

Points:

COMP30020 Declarative Programming Semester 2 12.50

COMP90048 Declarative Programming Semester 2 12.50

Corequisites: None

Recommended
Background Knowledge:

Basic proficiency in discrete mathematics.

Non Allowed Subjects: None

Core Participation
Requirements:

<p>For the purposes of considering request for Reasonable Adjustments under the Disability
Standards for Education (Cwth 2005), and Student Support and Engagement Policy, academic
requirements for this subject are articulated in the Subject Overview, Learning Outcomes,
Assessment and Generic Skills sections of this entry.</p> <p>It is University policy to
take all reasonable steps to minimise the impact of disability upon academic study, and
reasonable adjustments will be made to enhance a student's participation in the University's
programs. Students who feel their disability may impact on meeting the requirements of this
subject are encouraged to discuss this matter with a Faculty Student Adviser and Student
Equity and Disability Support: http://
services.unimelb.edu.au/disability</p>

Contact: email: harald@unimelb.edu.au (mailto:harald@unimelb.edu.au)

Subject Overview: AIMS

In the 1930s, Alan Turing and Konrad Zuse independently proposed designs of computing
machines based on the idea that storage used for data and storage used for instructions be
indistinguishable. This “stored-program” model formed the blueprint for all modern computers.
The ability to treat programs as data turned out to be very powerful, as it meant that a program
could be designed to read, generate, analyse and/or transform other programs, and even
modify itself while running. This subject is concerned with meta-programs - programs that work
on other programs, possibly generating programs as output. People routinely read, generate,
analyse, test, and transform programs. For example, a programmer may look through code for
potential buffer overruns, and may add runtime tests to avoid the security problems that could
result. It is preferable, however, to automate such activity as far as we can, partly because
that makes programmers more productive, and partly because computers generally are better
at these tasks, avoiding human oversights and mistakes. This subject introduces the main
techniques and applications of program analysis and transformation, including methods used by
modern optimizing compilers and allied tools.

INDICATIVE CONTENT

Syntax and semantics: Program representations, operational and denotational semantics.

Fixed point theory: Order, lattices, functions and fixed points

Program analysis: The monotone framework, constraint-based analysis, collecting
semantics, abstract interpretation, widening, inter-procedural analysis, analysis of functional
and logic programs

COMP90053 Program Analysis and Transformation,2015 http://handbook.unimelb.edu.au/view/2015/COMP90053

Page 2 of 3 02/02/2017 8:55 A.M.

Meta-programming: Interpreters, meta-interpreters, program instrumentation, source-to-
source program transformation, including fold/unfold and partial evaluation

Other topics may be covered via the project, for example, analysis for violations of safety
and/or security policies, or analysis and transformation for finding and implementing
parallelism.

Learning Outcomes: INTENDED LEARNING OUTCOMES (ILO)

On completion of this subject, students should have the following skills:

1 Describe standard approaches to program analysis and program transformation
2 Solve mathematical problems relevant to reasoning about program runtime properties
3 Design and build non-trivial program analysis/transformation tools
4 Adapt and apply existing program analysis tools to the needs of a project
5 Explain the limits of program analysis as applied to specific languages, and use this to

inform decisions about which languages to use in programming projects

Assessment: A 45-minute mid-semester written test around Week 7, requiring approximately 13 - 15 hours of
work (10%), addressing ILOs 1 and 2. A programming project during semester (30%), requiring
approximately 35 - 40 hours of work, addressing ILOs 3 and 4. A 2-hour end-of-semester written
examination (60%), addressing ILOs 1, 2, and 5. Hurdle requirement: To pass the subject,
students must obtain: 15/30 in project work 35/70 in the mid-semester test and end-of-semester
written examination combined.

Prescribed Texts: None

Breadth Options: This subject is not available as a breadth subject.

Fees Information: Subject EFTSL, Level, Discipline & Census Date, http://enrolment.unimelb.edu.au/fees

Generic Skills: On completion of the subject, students should have the following skills:

Analytical skills

Reasoning and problem-solving skills

Ability to apply knowledge of science and engineering fundamentals

Capacity for creativity and innovation

Ability to undertake problem identification, formulation and solution

Ability to utilise a systems approach to complex problems and to design for performance.

Notes: LEARNING AND TEACHING METHODS

The subject involves two 1-hour lectures per week followed by a 1-hour workshop. Weekly
tutorial problems are assigned and discussed in class. The programming project is pivotal, as
the subject relies heavily on learning-by-doing. Students work in small groups to implement a
sophisticated program analysis tool of practical value. Students are encouraged to share ideas
and artefacts, such as developed test data. More generally, “contributing student pedagogy”
is utilised as a community-building tool. Accordingly, in-plenum discussion of the project is
allowed, and encouraged.

INDICATIVE KEY LEARNING RESOURCES

The subject uses online reading materials and an online discussion forum. It offers advance
access to teaching materials, including slides used in lectures.

CAREERS / INDUSTRY LINKS

Semantics-based formal approaches are increasingly important in software engineering and
software development, in particular for security- and safety-critical applications.

Related Course(s): Master of Information Technology
Master of Information Technology
Master of Science (Computer Science)
Master of Software Systems Engineering

http://enrolment.unimelb.edu.au/fees

COMP90053 Program Analysis and Transformation,2015 http://handbook.unimelb.edu.au/view/2015/COMP90053

Page 3 of 3 02/02/2017 8:55 A.M.

Related Majors/Minors/
Specialisations:

B-ENG Software Engineering stream
MIT Computing Specialisation
MIT Distributed Computing Specialisation
Master of Engineering (Software)

