ENGR90024 Computational Fluid Dynamics

Credit Points:	12.50			
Level:	9 (Graduate/Postgraduate)			
Dates & Locations:	This subject is not offered in 2014.			
Time Commitment:	Contact Hours: 3 x one hour lectures + 1 x two hour workshop per week Total Time Commitment: Estimated 200 hours			
Prerequisites:	Students must have passed ONE OF the following subjects:			
	Subject	Study Period Commencement:	Credit Points:	
	ENGR30002 Fluid Mechanics	Semester 1, Semester 2	12.50	
	ENGR30001 Fluid Mechanics and Thermodynamics MCEN30018 Thermodynamics and Fluid Mechanics			
	and ONE OF the following subjects:			
	Subject	Study Period Commencement:	Credit Points:	
	MAST20029 Engineering Mathematics	Summer Term, Semester 1, Semester 2	12.50	
	MAST20030 Differential Equations	Semester 2	12.50	
Corequisites:	None			
Recommended Background Knowledge:	None			
Non Allowed Subjects:	None			
Core Participation Requirements:	For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability			
Contact:	Email: m.davidson@unimelb.edu.au (mailto:m.davidson@unimelb.edu.au)			
Subject Overview:	AIMS			
	This subject provides presents fundamental numerical techniques relevant to the simulation of fluid flow and heat/mass transfer. It will give students an understanding of common numerical methods operating "under the hood" in Computational Fluid Dynamics software, and will prov students with an introductory basis for writing computer code to implement such numerical procedures.			
	INDICATIVE CONTENT			
	Ordinary Differential Equations: explicit and implicit methods, stability, systems of ODEs, boundary value problems, MATLAB. Partial Differential Equations: overview, types of equations, boundary conditions, convection-diffusion equations, differencing schemes, finite volume method, stability - von Neumann analysis, error analysis - dispersion, diffusion errors, solving Laplace and Poisson equations, methods for solving Navier-Stokes equations. OpenFoam:			

Page 1 of 2 02/02/2017 11:55 A.M.

	fundamentals of OpenFoam - examples, solving simple 2D problems, Laplace and Poisson equations with OpenFoam, solving complex 2D fluid flow problems. C and C++ programming.		
Learning Outcomes:	INTENDED LEARNING OUTCOMES (ILO)		
	On completion of this subject the student is expected to:		
	 Apply the differential equations governing fluid flow, heat transfer and mass transport to formulate strategies for the solution of engineering problems Use basic methods for solving these equations numerically using a computer Use a Computational Fluid Dynamics software package to solve engineering problems 		
Assessment:	Class tests and assignments during the semester contributing 40% to the final mark An end of semester examination not exceeding three hours contributing 60% to the final mark Hurdle requirement: A pass in the end of semester examination is required to pass the subject		
Prescribed Texts:	None		
Recommended Texts:	None		
Breadth Options:	This subject is not available as a breadth subject.		
Fees Information:	Subject EFTSL, Level, Discipline & Census Date, http://enrolment.unimelb.edu.au/fees		
Generic Skills:	# In-depth technical competence in at least one engineering discipline # Ability to undertake problem identification, formulation, and solution # Ability to utilise a systems approach to complex problems and to design and operational performance # Capacity for lifelong learning and professional development		
Notes:	LEARNING AND TEACHING METHODS		
	The subject will be delivered through a combination of lectures and workshops. Students will also complete two assignments which will reinforce the material covered in lectures.		
	INDICATIVE KEY LEARNING RESOURCES		
	Students will have access to lecture material, computing resources, and Computational Fluid Dynamics software. The subject LMS site also contains example MATLAB and C computer code, and worked solutions, relevant to the workshops.		
	CAREERS / INDUSTRY LINKS		
	One assignment will involve the use of the Computational Fluid Dynamics software in an engineering context.		
Related Course(s):	Master of Philosophy - Engineering Ph.D Engineering		
Related Majors/Minors/ Specialisations:	B-ENG Mechanical Engineering stream Master of Engineering (Biochemical) Master of Engineering (Chemical) Master of Engineering (Mechanical)		

Page 2 of 2 02/02/2017 11:55 A.M.