ENGR10003 Engineering Systems Design 2

Credit Points: 12.50

Level: 1 (Undergraduate)

Dates & Locations: This subject is not offered in 2014.

Time Commitment: Contact Hours: 3 x one hour lectures and 1 x three hour workshop per week Total Time Commitment: 170 hours.

Prerequisites: A mark of at least 25 in VCE Math Methods or equivalent OR Admission into the Bachelor of Science course or the Bachelor of Biomedicine course.

Corequisites: None

Recommended Background Knowledge:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Study Period Commencement:</th>
<th>Credit Points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR10004 Engineering Systems Design 1</td>
<td>Semester 1, Semester 2</td>
<td>12.50</td>
</tr>
</tbody>
</table>

Non Allowed Subjects: None

Core Participation Requirements: For the purposes of considering request for Reasonable Adjustments under the Disability Standards for Education (Cwth 2005), and Students Experiencing Academic Disadvantage Policy, academic requirements for this subject are articulated in the Subject Description, Subject Objectives, Generic Skills and Assessment Requirements of this entry. The University is dedicated to provide support to those with special requirements. Further details on the disability support scheme can be found at the Disability Liaison Unit website: http://www.services.unimelb.edu.au/disability/

Contact: Dr. Gavin Buskes
Contact: buskesgj@unimelb.edu.au (mailto:buskesgj@unimelb.edu.au)

Subject Overview:

AIMS

Engineering Systems Design 2 will develop the students’ understanding of the engineering method and the importance of engineering in society. Engineering Systems Design 2 focuses on inter-relationships in engineering systems drawing on important examples from lightweight structures and digital electronic circuits. This subject will prepare students for an exciting and rigorous engineering education that will allow them to serve the needs of an increasingly complex society. The subject ENGR10003 Engineering Systems Design 2 provides a foundation for various subsequent subjects in the second year of study.

INDICATIVE CONTENT

Topics include:

- Digital systems – analog-to-digital conversion, number systems, codes, truth tables, logic gates and Boolean algebra, combinational logic design, trade-offs, modularity and PLDs;
- Programming – Introduction and history of programming, Operators, Functions, Branching, Loops, Iteration, Algorithms;
- Mechanics – Vectors, forces and analysis of spring systems, Analysis of structures – loads, support and forces in joints and bars, method of joints, strength of materials and buckling, Describing motion in rectangular coordinates, Newton's second law and equations of motion, work and energy in dynamical systems.

Learning Outcomes:

INTENDED LEARNING OUTCOMES (ILO)

Having completed this subject it is expected that the student be able to:

1. Analyse and design simple combinational logic circuits
Assessment:

- **One written examination**, not exceeding three hours at the end of the semester, worth 60%.
- **Continuous assessment** of submitted team (2-3 students) assignments, in-class laboratory exercises and project work, not exceeding 30 pages in total over the semester, worth 30%.
- **Regular online assessments**, worth 10% in total.

Hurdle requirement: Students must pass the written exam to pass the subject. Intended Learning Outcomes (ILOs) 1 to 4 are assessed in the final written examination. ILOs 1, 3 and 4 are assessed in the online assessments. ILOs 1 to 5 are assessed in the submitted team assignments, in-class laboratory exercises and in-class discussions.

Prescribed Texts:

Breadth Options:

This subject potentially can be taken as a breadth subject component for the following courses:

- [Bachelor of Arts](https://handbook.unimelb.edu.au/view/2014/B-ARTS)
- [Bachelor of Commerce](https://handbook.unimelb.edu.au/view/2014/B-COM)
- [Bachelor of Music](https://handbook.unimelb.edu.au/view/2014/B-MUS)

You should visit [learn more about breadth subjects](http://breadth.unimelb.edu.au/breadth/info/index.html) and read the breadth requirements for your degree, and should discuss your choice with your student adviser, before deciding on your subjects.

Fees Information:

Subject EFTSL, Level, Discipline & Census Date, http://enrolment.unimelb.edu.au/fees

Generic Skills:

At the completion of this subject students should have developed their:

- Problem solving and analytical skills
- Capacity to tackle unfamiliar problems
- Communication skills through written and oral presentations
- Ability to plan work and be efficient in time management
- Hands-on skills through practical projects
- Sense of intellectual curiosity
- Appreciation of different learning styles; and
- Ability to work effectively in a team environment

Notes:

Students enrolled in the BSc (new degree only) will receive science credit for the completion of this subject.

This subject is available as breadth for Bachelor of Arts, Bachelor of Commerce, Bachelor of Environments and Bachelor of Music.

LEARNING AND TEACHING METHODS

The subject is delivered through lectures and workshop classes that combine both tutorial and hands-on laboratory activities.

INDICATIVE KEY LEARNING RESOURCES

Students are provided with lecture slides, additional lecture notes, workshop worksheets and solutions, reference text lists and online quiz material.

CAREERS / INDUSTRY LINKS

Exposure to industry standard engineering design automation tools through workshop activities.

Related Course(s):

- Bachelor of Biomedicine

Related Majors/Minors/Specialisations:

- B-ENG Chemical Engineering stream
- B-ENG Chemical and Biomolecular Engineering stream
- B-ENG Civil Engineering stream
| B-ENG Electrical Engineering stream |
| B-ENG Mechanical Engineering stream |
| B-ENG Software Engineering stream |
| Science-credited subjects - new generation B-SCI and B-ENG. |
| Selective subjects for B-BMED |

Related Breadth Track(s):

- Electrical Engineering
- Mechanical Engineering